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ABSTRACT ARTICLE HISTORY
Introduction: The mechanism of sensitization of the central nervous system partly explains the chronic Received 16 January 2017
pain experience in many patients, but the etiological mechanisms of this central nervous system  Accepted 6 July 2017
dysfunction are poorly understood. Recently, an increasing number of studies suggest that aberrant KEYWORDS

glial activation takes part in the establishment and/or maintenance of central sensi_tization_. Pain: fibromyalgia; low back
Areas covered: This review focused on preclinical work and mostly on the neurobiochemistry studied pain; sleep; stress;

in animals, with limited human studies available. Glial overactivation results in a low-grade neuroin- neuroinflammation
flammatory state, characterized by high levels of BDNF, IL-18, TNF-a, which in turn increases the

excitability of the central nervous system neurons through mechanisms like long-term potentiation

and increased synaptic efficiency. Aberrant glial activity in chronic pain might have been triggered by

severe stress exposure, and/or sleeping disturbances, each of which are established initiating factors for

chronic pain development.

Expert opinion: Potential treatment avenues include several pharmacological options for diminishing

glial activity, as well as conservative interventions like sleep management, stress management and

exercise therapy. Pharmacological options include propentofylline, minocycline, 3 -adrenergic receptor

antagonists, and cannabidiol. Before translating these findings from basic science to clinical settings,

more human studies exploring the outlined mechanisms in chronic pain patients are needed.

1. Introduction [13], patellar tendinopathy [14], orofacial pain [15], and lateral
epicondylalgia [16,17].

CS encompasses various related dysfunctions within the
central nervous system, all contributing to altered, often
increased responsiveness to a variety of stimuli-like mechan-
ical pressure, chemical substances, light, sound, cold, heat,
stress, and electricity [18]. Such central nervous system dys-
functions include sensitization of spinal cord neurons [19],
altered sensory processing in the brain [20] with increased
brain activity in areas known to be involved in acute pain
sensations (primary and secondary somatosensory cortices,
thalamus, insula, anterior cingulate cortex, and prefrontal cor-
tex) [21], involvement of several brainstem nuclei (nucleus
cuneiformis, periaqueductal gray, parabrachial nucleus, etc.),
altered brain neurochemistry [22], poor functioning of des-
cending antinociceptive mechanisms [23,24], and increased
activity of brain-orchestrated nociceptive facilitatory pathways
[20]. These facilitatory pathways probably relate to the
increased brain activity as described above, and they might
be (further) activated by cognitive—emotional factors such as

Modern pain neuroscience has advanced our understanding
about pain, including the role of central sensitization (CS, or
central hyperexcitability) in the presence and amplification of
(persistent) pain experiences. CS is defined as ‘an amplification
of neural signaling within the central nervous system that
elicits pain hypersensitivity’ [1] and ‘increased responsiveness
of nociceptive neurons in the central nervous system to their
normal or subthreshold afferent input’ [2]. In many patients
with chronic pain, a clear origin for nociceptive input is lacking
or is not severe enough to explain the severe pain and other
symptoms experienced by the patient. In such patients, CS is
often present and can explain the clinical picture. It is now
well established that the mechanism of sensitization of the
central nervous system partly explains the chronic pain experi-
ence in many patients, including those with neuropathic pain
[3], whiplash [4], chronic low back pain [5], osteoarthritis [6],
headache [7], pain following cancer treatment [8], fibromyal-
gia [9], chronic shoulder pain [10], chronic fatigue syndrome
[11], rheumatoid arthritis [12], temporomandibular disorders
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Article highlights

e An increasing amount of animal research data supports the idea of
aberrant glial activity as a potential underlying, even etiological,
mechanism of central sensitization.

¢ A recent human study using positron emission tomography-magnetic
resonance imaging (PET/MRI) identified a pattern consistent with
brain glial activation in patients with chronic low back pain, and
other human cerebrospinal fluid studies support the idea of neural
inflammation in chronic pain patients.

e Stress and poor sleep can trigger glial overactivation and subsequent
low-grade neuroinflammatory state, characterized by high levels of
BDNF, IL-1B, TNF-a, which in turn increases the excitability of the
central nervous system neurons through mechanisms like long-term
potentiation and increased synaptic efficiency.

o Several potential pharmacological treatment avenues for diminishing
glial activity in chronic pain patients are available, including minocy-
cline antibiotics, B-adrenergic receptor antagonists and propentofyl-
line. Human causation and effectiveness studies exploring these
pharmacological options are emerging.

» Potential conservative treatment options for normalizing glial activity
in chronic pain patients include sleep management (e.g., cognitive
behavioral therapy for insomnia), stress management and exercise
therapy, but studies examining whether such interventions can actu-
ally normalize glial activity in chronic pain patients are needed.

This box summarizes key points contained in the article.

pain catastrophizing, stress, hypervigilance, lack of acceptance,
depressive thoughts, and maladaptive illness perceptions (e.g.
perceived injustice, low self-efficacy).

CS is also accompanied by an exaggerated central nervous
system response, to nociceptive [25] or even non-nociceptive
[26] input, resulting in pain that is disproportional to the
stimulus [27]. CS is often associated not only with severe
pain but also with various other symptoms like sleep distur-
bances and stress intolerance [28,29]. In spite of our increased
understanding of the mechanisms explaining (hypersensitiv-
ity) symptoms in patients with chronic pain, there is much to
learn about the development of chronic pain, including the
etiological mechanisms underlying CS. Why do some patients
develop CS pain while others do not?

Glia are nonneuronal cells that reside within the nervous
system. A subset of glial cells, in particular microglia and
astrocytes, resembles physiological functions of immune cells
and therefore can be referred to as immune-like [30] or
immune competent [31] cells. For too long, neuroscientists
have focused on neurons and neglected the glia, probably
relating to the fact that basic neuroscience was historically
developed from methods monitoring electrical signaling in
(between) neurons [32]. Yet, glia far outnumber neurons, as
well as having much higher cellular diversity and functions
than neurons [33].

An increasing number of preclinical studies suggest that
aberrant glial activation might explain the establishment and/
or maintenance of CS, and persistent pain [30,34-37], and that
poor sleep [38] and severe stress [31,39,40] each can result in
such aberrant glial activation. Here, we update the reader with
our current understanding of the potential role of aberrant
glial activity in explaining (the onset of) CS in patients with
chronic pain, together with severe or long-term stress and
sleep disturbances as triggers for aberrant glial activation.

Finally, potential pharmacological and non-pharmacological
treatment avenues for these neuro-immune interactions are
discussed. This review focused on preclinical work and mostly
on the neurobiochemistry studied in animals, with limited
human studies available.

2. Glial activation, neuroinflammation, and the
etiology of CS pain

The three major glial cell types are microglia, astrocytes, and
oligodendrocytes. While oligodendrocytes have recently been
implicated in the development of central pain [41], here we
will focus mostly on the first two classes of glia, as their role in
pain is more established. Microglia are sometimes referred to
as the resident macrophages in the brain: in the presence of
injury or infection, they become activated and work together
to repair the damage and restore brain homeostasis [31,42]. To
allow microglia to perform this important physiological func-
tion, it is crucial that they are not static cells but rather hold a
high degree of motility within the central nervous system.
While in the past, authors would characterize microglia as
being either in a ‘resting state’ or an ‘activated state,’ today
most accept that microglial cells, when not activated, are in a
‘surveillance’ rather than ‘resting’ state. Microglia are in fact
continuously protracting and retracting their processes to scan
the molecular and cellular microenvironment, including
synapses, in their proximity [31].

In addition, microglia play a crucial role in synapse forma-
tion, synapse elimination (e.g. microglia can phagocytize hip-
pocampal synapses), and refinement of neuronal circuits with
complement proteins C1q and C3 as critical mediators [31].
Synapse formation/elimination is a crucial mechanism for
many functions, including learning (i.e. long-term potentiation
and long-term depression) and protection against injury.
Rapid eye movement sleep is important in selectively eliminat-
ing and maintaining newly formed synapses, which in turn
contributes to learning and memory consolidation [43]. Also,
microglia motility is regulated by different modes of neuro-
transmission: increased by glutamatergic neurotransmission
and decreased by GABAergic neurotransmission [44]. Hence,
microglia and neurons have bidirectional interactions and are
constantly ‘fine-tuning’ each other.

Upon activation, microglia transform morphologically from
a ramified (resting) to an ameboid (phagocytic) phenotype
[42]. Not every activated microglia present a pro-inflammatory
pattern. Microglia inflammatory actions depend on the activa-
tion subtype: the pro-inflammatory subtype (i.e. M1) secretes
pro-inflammatory cytokines (e.g. tumor necrosis factor a [TNF-
a], interleukin 1B [IL-1p], IL-6), neurotrophic factors (e.g. brain-
derived neurothrophic factor or BDNF), and free radicals that
are toxic to the surrounding cells [42], while the anti-inflam-
matory subtype (i.e. M2) secretes anti-inflammatory cytokines
(e.g. IL-10) for resolving inflammation and trophic factors for
promoting tissue healing [45]. Such generation of inflamma-
tory responses is mediated through the activation of p38
mitogen-activating kinase (MAPK) in spinal microglia, at least
in male (but not in female) animals [46], which plays a pivotal
role in wide dynamic range neuronal hyperexcitability [47].



M1-M2 polarization of microglia also has different effects on
synaptogenesis: M2-microglia stimulate synaptogenesis, while
M1-microglia in inflammatory state result in synapse elimina-
tion (synaptic stripping, a mechanism linked to learning pro-
cesses) [31]. The concept of M1 versus M2 polarization of
microglia is currently being debated, since it may represent a
continuous process rather than different subtypes [48]. Also,
the fact that glial cells have different dynamics and a different
order of activation after stimulus might also explain differ-
ences across patients, possibly even explaining in part why
some people develop chronic pain after a certain event (e.g.
physical trauma), while others do not.

In the acute or subacute phases of injury and pain, glial
activation likely plays an adaptive role, as it favors tissue
healing and recovery. When glial activation does not resolve,
and becomes chronic, it can become pathogenic and lead to
collateral damage of nearby neurons and other glia [42].
Resulting low-grade chronic neuroinflammation is an under-
lying feature of many neurological disorders like major depres-
sive disorder [42], Alzheimer’s disease [42], Parkinson’s disease
[42], schizophrenia [42], traumatic brain injury [49], diabetic
retinopathy [50], and brain tumors [51]. Similar chronic neu-
roinflammation might also be involved in the pathogenesis of
chronic pain [36,52-55].

Aberrant glial activity has the potential to initiate CS
through several mechanisms. Activated microglia have been
identified as a major source for the synthesis and release of
BDNF which is responsible for increasing neuronal excitability
by causing disinhibition in dorsal horn neurons in the spinal
cord [56,57]. This microglia-to-neuron communication includes
not only attenuation of the pain inhibitory action of gamma-
aminobutyric acid (GABA) but also of glycine receptor-
mediated inhibition [57]. Increased glial synthesis of BDNF in
the nociceptive pathways in patients with CS pain can be
considered a pathophysiological response [58].

Elevated IL-1B gene expression in microglia has been
linked to long-term potentiation induction and maintenance
(and consequently to learning, fear, and memory processes)
[31]. Likewise, gliosis is accompanied by increased TNF-a
availability, which in turn induces long-term potentiation
[59] and consequent enhanced synaptic efficacy [31] and
pain sensitization [59]. Long-term potentiation and enhanced
synaptic efficacy are (partly overlapping) key mechanisms
underlying increased excitability of the central nervous sys-
tem pain [60-62] and the formation of (maladaptive) pain
memories [63,64] in patients with chronic pain and CS, pos-
sibly coordinated by gliosis. Likewise, pro-inflammatory med-
jiators, produced by activated microglia  during
neuroinflammation, directly activate nearby neurons, which
express receptors for these pro-inflammatory cytokines,
which in turn become hyperexcitable [31].

While structurally and functionally very different from
microglia, astrocytes have been convincingly demonstrated
to play a key role in the pathogenesis of persistent pain in
animal models [65-67]. Astrocytes are capable of detecting
the presence of an insult, such as an inflammatory challenge
[68] or nerve injury [69], to which they respond by exhibiting
hypertrophy, and increasing expression of a variety of
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molecules that contribute to hyperalgesia and allodynia,
such as the enzyme nitric oxide synthase [70], the pro-inflam-
matory cytokine IL-1 [68], and the chemokines CXCL1 [71].

In addition to the above-explained mechanisms, other
pathways could link aberrant glial activation and CS pain.
This includes the expression and function of the adenosine
A1 receptor (A1AR) on microglia [72]. Selective stimulation of
A1AR inhibits the morphological activation of microglia, pos-
sibly by suppressing the Ca(2+) influx induced by ATP treat-
ment, and microglial cells, pretreated with the ATAR agonist,
exhibit lower capability to facilitate spinal nociceptive neurons
[72]. In addition, proteinase-activated receptors are a family of
G-protein-coupled receptors available in neurons, microglia,
and astrocytes. They are activated by proteases, initiating a
series of intracellular signal pathways that result in not only
sensitization of pain pathways [73-75] but also activation of
the nuclear factor NK-kB [76], which is important for neural
plasticity in the nervous system, including synaptogenesis [77].
Activated NK-kB has the capacity to increase the expression of
BDNF in central neurons [77].

Importantly, pharmacological disruption of astroglial and
microglial function, or of the action of its products, can reduce,
reverse, or prevent nocifencive behaviors in animal models
[68-70,78]. Taken together, these studies demonstrate that
astrocytes, just like microglia, play an important role in the
pathogenesis of persistent pain in animals.

In fact, nearly all of the evidence that microglia might
play an important role in the maintenance of chronic pain
was derived from animal models. The first human study on
glial activity used a sensitive in vivo marker of glial cell
activation monitored using positron emission tomography
(PET) to show that limb denervation (n = 7) induces glial
activation, beyond the first-order projection area of the
injured neurons, in the human thalamus but not somato-
sensory cortex [79]. Only the one patient with bilateral
nerve injury showed bilateral microglia activation in the
thalamus, while the other six patients had only contralateral
activation. A more recent human study using PET-magnetic
resonance imaging identified a pattern consistent with brain
glial activation in patients with chronic low back pain [36], a
condition known to be related to CS [5]. Other human
studies using cerebrospinal fluid also support a potential
role for altered central cytokines and neurotrophic factors,
consistent with aberrant glial activation and related neu-
roinflammation, in a number of chronic pain states despite
varying etiologies [35]. Hence, the available evidence sup-
ports an association between aberrant glial activity and
neuroinflammation in humans with chronic pain, but direct
evidence showing that aberrant glial activity and neuroin-
flammation lead to the development of CS in humans is
currently unavailable and requires more research.

If aberrant glial activation or gliosis explains the onset of
CS, the next question will be what triggers aberrant glial
activation? Neuroscience has provided us with a number of
potential answers, including severe stress and sleep distur-
bances that may primarily target the brain. In the spinal
cord, glial activation is mainly triggered by peripheral tissue
inflammation or nerve damage. Still, in some instances,
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aberrant glial activation may not suffice for pain hypersensi-
tivity, necessitating to look beyond glial-triggered neuroin-
flammation toward the consequences of such aberrant glial
activation and related neuroinflammation on brain morphol-
ogy and functioning.

3. Stress as a trigger of glial activation and
consequent morphological brain changes

Stress can be defined as the continuous struggle of living
organisms to preserve an internal dynamic state of equilibrium
(homeostasis) [80]. Any factor, being either physical, psycho-
social, or emotional, that challenges homeostasis, is labeled as
a stressor [80]. High levels of anxiety in the time period
surrounding the traumatic musculoskeletal injury predict
development and maintenance of moderate-to-severe chronic
pain [81]. Likewise, childhood maltreatment (including emo-
tional abuse) is not only associated with increased risk of
chronic (low back) pain, it also relates to long-lasting CS to
nociceptive stimuli as seen in a subgroup of (highly debili-
tated) people with chronic low back pain [82].

In response to long-term stress, the body is exposed to
high levels of glucocorticoids. Glucocorticoids coordinate the
expression of subsets of genes involved in signal transduction,
neuronal structure, vesicle dynamics, neurotransmitter catabo-
lism, encoding of neurotrophic factors and their receptors [80].
Altogether, stress results in a highly coordinated set of
changes in gene expression underlying neuronal plasticity
[80], glial activation and consequent neuroinflammation with
increased IL-13 and IL-6 mRNA expression [31,39,40]. Indeed,
stress and the resulting noradrenaline plus glucocorticoids
activate microglia (which express al, a2, 1, and B2-adrener-
gic and glucocorticoid receptors), resulting in neuroinflamma-
tion (with increased availability of pro-inflammatory cytokines
like IL-1, TNF-a, and IL-6)/gliosis as described above [31]
(Figure 1). Stress activates glia in a way that they transform
into the pro-inflammatory subtype [39,40], which could then
induce CS. Long before they became activated, microglia
might have been primed by a traumatic event so that a
second ‘hit’ (e.g. another trauma or stress) induces an exag-
gerated glial response (the ‘double-hit’ hypothesis as
described in other neuroinflammatory disorders [83]).

Not surprisingly, in response to stress, microglia are found
to become activated in several brain regions, including the
prefrontal cortex, the lateral, basolateral, central, and basome-
dial nuclei of the amygdala and in the CA3 and dentate gyrus
of the hippocampus [31]. These brain areas undergo morpho-
logical changes in response to stress [84-86] and also play a
cardinal role in chronic pain [63,87-89]. Microglia, through
several mechanisms including the production of BDNF [90],
may explain such stress-induced morphological changes in the
brain and even CS (Figure 1). The pro-inflammatory mediators
produced by activated microglia during neuroinflammation
directly activate receptors on nearby neurons, inducing their
hyperexcitability [31].

Surprisingly, the morphological brain changes in response
to chronic stress are somewhat site-specific rather than dif-
fuse, and primarily involve hypertrophy in the amygdala and
atrophy in the prefrontal cortex and hippocampus [84,85]. This

chronic
stress

activated glia in prefrontal cortex
+ amygdala + hippocampus

hyperexcitable neurons in
prefrontal cortex +
amygdala + hippocampus

IL-11 +IL-61
= neuroinflammation

Figure 1. Schematic presentation of the mechanism of stress-induced aberrant
glial activation resulting in neuro-inflammation and consequent hyperexcitable
central nervous system neurons.

IL-1: interleukin type 1; IL-6: interleukin type 6.

may be partially related to the distribution of glucocorticoid
receptors, which are widely expressed in the brain but have
high densities in the medial prefrontal cortex [91], and speci-
ality in the hippocampus and amygdala [80,91]. Initial experi-
ments regarding the morphological changes in key brain areas
in response to chronic stress were conducted on animals, later
on backed up in human (mainly observational) studies [84,85].
These morphological changes can be induced by repeated
exposure to mild stressors or brief but intense stress [91]. It
is important to emphasize that these stress-induced morpho-
logical changes may be reversible [91] and hence do not
reflect genuine brain damage but rather a form of plasticity.
These morphological changes might protect brain areas from
permanent excitotoxic damage and therefore be adaptive [90].

4. Sleep as a trigger of glial activation and
neuroinflammation

In the absence of other intrinsic sleep disorders and shift
work, insomnia is defined as >30 min sleep latency and/or
minutes awake after sleep onset for >3 days/week for
>6 months [92,93]. Stress, sleep, and pain are closely inter-
connected. Insomnia is highly prevalent among patients
with chronic pain, with 53-90% of chronic pain patients
suffering from a clinically significant degree of insomnia
[94-97]. This might in part be attributed to the role of
stress. First, daily life stress (e.g. worry about going to
work the next morning) can perturb sleep [98]. Likewise,
major stressful life events and/or traumatic events such as
natural disasters, combat, or a traffic accident result in sleep
architecture changes that reflect poor sleep [98]. Increased
awakening and decreased sleep efficiency are the most
sensitive sleep architecture variables in response to stress
[98]. Second, poor sleep (e.g. lying awake at night or being
unable to fall asleep) can be a stressor. Third, the conse-
quences of poor sleep (i.e. feeling itchy and fatigued) result
in a marked diminished ability to cope with everyday’s
stressors. For all these reasons, it seems logic that sleep
management is often included as part of stress manage-
ment programs.

When addressing sleeping problems in the context of pain
neuroscience, it is important to highlight that a single night of
total sleep deprivation in healthy people is able to induce



generalized hyperalgesia and to increase state anxiety
[99,100]. These findings suggest that sleep problems might
not only perpetuate the central nervous system hyperexcit-
ability in patients with chronic musculoskeletal pain but also
serve as an initiating factor. Our current understanding of
sleep neuroimmunology provides potential links between
sleep difficulties and (the onset of) pain.

Melatonin is a neurohormone crucial for (deep) sleep and
analgesia. Preclinical studies revealed that selective MT2 mel-
atonin receptor partial agonists hold analgesic properties
through modulation of ON/OFF cells of brainstem descending
antinociceptive systems in neuropathic pain models [101,102].

Other neural mechanisms may contribute to the close
interaction between chronic pain and poor sleep. While
proper sleep facilitates immune health, sleep deprivation
results in low-grade inflammatory responses [103-105]. This
low-grade inflammatory response as a consequence of sleep
deprivation includes increased levels of IL-6, prostaglandin E2
[104,105], and nitric oxide [38] possibly mediated by cerebral
microglia [38]. Even low levels of inflammatory cytokines are
known to affect brain function [106] which correlates with
observations of increased sensitivity to painful stimuli follow-
ing sleep restriction [100,104,107]. Sleep apnea, sometimes
diagnosed in patients with chronic pain, is characterized by
intermitted hypoxia, which in turn activates brain microglia
toward an activated, pro-inflammatory state [108]. Taken
together, sleep deprivation imparts a glia-mediated low-
grade inflammatory response leading toward increased sensi-
tivity to pain as typically seen in chronic pain sufferers.

Understanding that aberrant glial activation or gliosis pos-
sibly explains the onset of CS, as summarized in Figure 2,
raises the question how to translate these findings to thera-
peutic targets? Likewise, understanding that aberrant glial
activation can be due to chronic stress exposure and/or
sleep disturbances raises the question how to account for it
in clinical practice? The study of glia’s role in humans with
chronic pain, and the mechanism of CS in particular, is still in
its infancy, making it too early to translate these findings to
clinical practice. However, thinking of potential therapeutic
targets provides new innovative avenues for experimental

sleep disturbances

EXPERT OPINION ON THERAPEUTIC TARGETS 821

testing of these ideas in humans with CS and chronic pain
within a research setting.

5. Treatments that have the potential to normalize
glial activity

Pharmacological treatments like minocycline, an antibiotic, the-
oretically hold the capacity to target aberrant glial activity in
patients with chronic pain and CS. Animal work has demon-
strated that (postoperative) minocycline antibiotics suppress
microglia and astrocytes and reduce hippocampal TNF-a and
IL-13 mRNA levels [109,110]. Likewise, minocycline inhibits
spinal microglial activation and attenuate diabetic pain in
rats with experimentally induced diabetes [111]. A recent
small randomized clinical trial has shown that a brief treat-
ment with minocycline was associated with a small, but sta-
tistically significant reduction in pain in patients with lumbar
radiculopathy [112]. Since patients with lumbar radiculopathy
demonstrate increased glial activity [36], it is possible that
minocycline reduces pain by inhibiting microglia in humans,
as it does in animals.

Another therapeutic avenue includes pretreatment with -
adrenergic receptor antagonists (e.g. propranolol), which have
been shown to reduce microglial activation in an animal model
[113]. In vitro work showed that ketamine inhibited some of the
inflammatory responses of both astrocytes and microglial cells
[114]. In addition, cannabidiol, a major non-psychotomimetic
constituent of Cannabis sativa, inhibits microglial activation and
consequent neuroinflammation [115]. Still, for all these treat-
ments, it remains to be established whether they are able to
normalize glial activity in humans, and if so, whether such glial
effects are accompanied by analgesic effects (Table 1).

In addition, inhibitors of cytokine synthesis closely linked to
glial activity, including propentofylline, have been explored for
the use as therapeutic agents for the treatment of neuropathic
pain [116]. Human microglia were less responsive to propen-
tofylline treatment [116], casting doubt whether direct micro-
glial inhibition is a relevant therapeutic target for patients with
chronic pain. However, methodological concerns with these
studies (the length of the trial, the dosage used, the specific

severe / chronic stress

e

‘ glial overactivation -

neuroinflammation ;

_—

- GABA & glycine receptor
-mediated inhibition

BDNFT
activated

activated proteinase-

T

IL-1B & TNF-a

N

long-term potentiation nearby neurons
synaptic efficiency hyperexcitable

receptors

/

central sensitization

Figure 2. Mechanisms linking glial overactivation to the development of central sensitization. The displayed mechanisms are mainly based on animal studies.

BDNF: brain-derived neurotrophic factor; GABA: gamma-amino-butyric acid; IL: interleukin; TNF: tumor necrosis factor.
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Table 1. Potential therapeutic avenues for normalizing glial activity in patients with chronic pain.

Name of treatment Type of treatment

Mechanism of action

Minocycline Antibiotic

Propranolol B-Adrenergic receptor antagonist

Ketamine NMDA blocker

Propentofylline Atypical methylxanthine

Cannabidiol A major non-psychotomimetic constituent of Cannabis sativa

Conservative intervention
Conservative intervention
Conservative intervention

Stress management
Sleep management
Exercise therapy

Suppresses microglia and astrocytes [109,110]

Reduces microglial activation [113]

Inhibits inflammatory responses of astrocytes and microglia [114]
Inhibits cytokine synthesis [116]

Inhibits microglial activation [115]

Prevents (further) glial (over)activation?

Prevents (further) glial (over)activation?

Reverses astrocyte and microglia hyperactivity [117]

The mechanisms of action are currently based on animal studies mainly.

Any therapeutic choice of pharmacological option for normalizing glial activity in patients with chronic pain will rely on many factors, including the type of chronic

pain.
NMDA: N-methyl-p-aspartate.

population targeted, and potential interaction with other
drugs or food intake) limit the significance of these negative
study outcomes [118].

Also, the reasoning outlined above regarding the possible
role of aberrant glial activity and neuroinflammation in rela-
tion to CS is focused primarily on the onset of CS. If CS has
been initiated and the aberrant glial activity and neuroinflam-
mation has been present for a few months or even longer, this
has likely resulted in neuroplastic changes including some of
the above-discussed changes in brain morphology or connec-
tivity. When neuroplastic changes are already established,
targeting aberrant glial activity might be too late or at best
can prevent further acceleration of CS in chronic pain patients,
rather than serving as a new potential treatment for chronic
pain. This reasoning is supported by animal work, showing
that after spinal nerve ligation, dorsal horn microglia are acti-
vated first, followed by the activation of astrocytes, accompa-
nied by a decrease in microglial activity [119]. Hence, targeting
the aberrant glial activity might be a new therapeutic avenue
for the prevention of the development, rather than the treat-
ment of CS and chronic pain. A preclinical study found positive
outcome when glia-suppressing drugs are delivered in the
early postoperative phase [110], but this idea requires experi-
mental testing in humans. The possibility to image glial activa-
tion in vivo [36] may help to identify patients most likely to
benefit from this therapeutic approach, and to identify opti-
mal treatment window, duration, or dosage.

6. Conclusion

An increasing amount of animal research data support the
idea of aberrant glial activity as a potential underlying, even
etiological, mechanism of CS. Such glial overactivation results
in a low-grade neuroinflammatory state, characterized by high
levels of BDNF, IL-13, and TNF-a, which in turn increases the
excitability of the central nervous system neurons through
mechanisms like long-term potentiation and increased synap-
tic efficiency. Other mechanisms linking aberrant glial activa-
tion to the development of CS include attenuation of the
nociceptive inhibitory action of GABA and glycine receptor-
mediated inhibition. In addition, aberrant glial activity in
chronic pain might have been triggered by severe stress
exposure, and/or sleeping disturbances, each of which are
established initiating factors for chronic pain development.
Potential treatment avenues include several pharmacological

options for diminishing glial activity, as well as conservative
interventions like sleep management, stress management, and
exercise therapy. Before translating these findings from basic
science to clinical settings, more human studies exploring the
outlined mechanisms in chronic pain patients are needed.

The present work is focused on the role of the glia. Other
neuro-immune pathways also exist. For instance, in addition to
stress and sleep problems, animal work suggests that neuro-
trauma results in aberrant glial activation [120]. Also, neuroin-
flammation observed in animals in response to stress may not
be attributed solely to glial activation: stress also induces
monocyte trafficking to the brain (e.g. from the bone marrow
to the amygdala), resulting in inflammation (i.e. IL-1)-mediated
anxiety-like behavior [39,40]. This increased monocyte recruit-
ment to the brain is a unique pathway in which the immune
system communicates with the brain [39]. In addition, animal
research findings revealed gender differences, including a
microglia-independent pathway to mediate pain hypersensi-
tivity [37]. According to those studies, microglia are not
required for the development of mechanical pain hypersensi-
tivity in female mice, as they achieved similar levels of pain
hypersensitivity using adaptive immune cells, likely T lympho-
cytes [37,121,122]. Monocyte trafficking might be the pre-
ferred pathway for mediating pain hypersensitivity in
females [39].

The present review focused on explaining the underlying
mechanisms of CS, a mechanism now established to contri-
bute to wide variety of pathologies. It is difficult to combine
findings from a large range of different pathologies, studies at
different molecular levels and from various types of experi-
ments in one paper. However, the paper aims at creating a
bridge between preclinical and clinical data, in order to con-
tribute to translational efforts in the field (or at least stimulate
translational work in this area).

7. Expert opinion: non-pharmacological treatment
options to normalize glial activity

We emphasized the role of severe stress and sleeping distur-
bances in triggering aberrant glial activity, implying that aber-
rant glial activity is not the cause, but instead one part in the
long chain of CS initiating events. Hence, conservative inter-
ventions like stress and sleep management seem warranted.
Within the field of conservative interventions, exercise is
another intervention that is helpful in many chronic pain



states and could also be working in part via glial mechanisms.
Exercise increases glial fibrillary acidic protein expression in
hippocampal astrocytes, more specifically in the stratum radia-
tum, a region that contains numerous astrocytes and is impor-
tant for learning and memory [123]. The increased expression
of the astrocytic marker ‘glial fibrillary acidic protein’ implies
that exercise results in a substantial increase in astroglial
metabolism and protein synthesis, consistent with a healthy
cellular hypertrophy in response to increased physiological
demands [123]. This notion is supported by the observed
change in morphology of the astrocytes in response to exer-
cise [123]. This astrocyte activation in response to exercise can
be explained by the increased production of growth factors
like nerve growth factor, fibroblast growth factor, glial cell
line-derived neurotrophic factor, and BDNF in response to
exercise [42,124,125] - e.g. nerve growth factor and fibroblast
growth factor are capable of inducing astrocytic proliferation.
Astrocytic activation in response to exercise implies strength-
ened ‘tripartite’ synapses (astrocyte—presynaptic neuron—-post-
synaptic neuron), as astrocytes are needed (and change their
morphology) around potentiated synapses to accompany neu-
ronal plasticity as seen during long-term potentiation [123].

The immune-modifying, more specifically whole-body anti-
inflammatory, effects of moderate physical activity/exercise are
now well established [42]. Exercise is known to change the
inflammatory state to become anti-inflammatory or neuropro-
tective in several neuroinflammatory diseases such as multiple
sclerosis and systemic lupus erythematous [45]. Importantly,
new research findings suggest that exercise can also have
anti-inflammatory effects on the central nervous system
[42,45]. More specifically, it seems plausible that exercise (ther-
apy) can diminish the adverse and nonspecific activation of
glial cells (gliosis) as typically seen in chronic neuroinflamma-
tion [45]. At the level of the glial cells, physical activity/exercise
reduces microglial proliferation and triggers a switch toward
an anti-inflammatory phenotype [42]. Such a phenotype shift
is accompanied by a dramatic change in production of cyto-
kines (i.e. from pro- to anti-inflammatory). This provides a
plausible explanation for how regular and moderate exercise
maintains glial activity within the healthy range, which in turn
might contribute to the reduced incidence of brain disease
(characterized by chronic neuroinflammation) in people who
exercise regularly [42]. Still, evidence that physical activity/
exercise alters glial activity in human brain areas involved in
pain integration and perception is currently unavailable and
represents an important focus for future research.

It remains uncertain whether we can apply this reasoning
of anti-neuroinflammatory effects of exercise therapy to the
treatment of CS in patients with chronic pain. One mice
study supports this idea: physical training (i.e. swim exercise)
in mice after nerve lesion reversed mechanical hypersensi-
tivity, normalized nerve injury-induced nerve growth factor,
and BDNF expression in the dorsal root ganglion, reversed
astrocyte and microglia hyperactivity in the dorsal horn,
which remained normalized after training cessation [117].
Another preclinical study showed that prolonged exercise
normalizes early microglia- and astrocytes-mediated brain
inflammation following myocardial infarction induction
[126]. Also, the possible anti-neuroinflammatory effects of
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exercise therapy to the treatment of CS in patients with
chronic pain are supported by studies showing decreased
pain sensitivity following exercise therapy in chronic pain
patients [127,128]. A final pathway through which exercise
can benefit glial health [129] includes the stimulation of glial
heat shock protein 72 expression [129]. Exercise induced
increased neuronal and astroglial levels of heat shock pro-
tein 72 in normal spinal cord tissue, which facilitated func-
tional recovery after experimental spinal cord injury [129].
Animal work has informed us that increased glial expression
of heat shock protein 72 has anti-inflammatory effects and
protects against astroglial apoptosis [129,130].
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