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U
ntil recently, the search for biological mechanisms underlying 
chronic pain has focused primarily on nervous system 
dysfunction.48 Increasingly, the contemporary view is that pain 
and injury involve a complex array of biological processes that 

engage multiple systems beyond simple changes in neural excitation, 
inhibition, and processing. The term plasticity is commonly ascribed 
to nervous system adaptation in pain, but can be expanded to biological

outcomes. This is particularly relevant for 
sensorimotor control of the spine, which 
refers to all the sensory and motor as-
pects of control of spine mechanics, from 
the brain to the muscle and other tissues. 
It is no longer sufficient to consider pain 
as simply the response to the discharge of 
nociceptive neurons. The contemporary 
understanding of pain involves consider-
ation of different broad categories of pain 
with different underlying mechanisms, 
activation of a network of neural systems, 
neuroimmune interactions (peripherally 
and centrally), and tissue-level changes, 
as well as psychological and social do-
mains. All of these have a potential role 
in the sensorimotor adaptation to pain, 
as well as in the development and main-
tenance of pain.

Together, this broadened understand-
ing of the sensorimotor changes in pain 
and injury underpins the need to recon-
sider the role of sensorimotor control in 
the rehabilitation of back pain. The pur-
pose of this commentary is to present a 
contemporary view of implications of 
the biology of pain and injury for senso-
rimotor function. The following section 
starts with a review of the contemporary 
understanding of the biology of pain 

UU SYNOPSIS: Pain is complex. It is no longer 
acceptable to consider pain solely as a peripheral 
phenomenon involving activation of nociceptive 
neurons. The contemporary understanding of 
pain involves consideration of different underlying 
pain mechanisms and an increasing awareness of 
plasticity in all of the biological systems. Of note, 
recent advances in technology and understand-
ing have highlighted the critical importance of 
neuroimmune interactions, both in the peripheral 
and central nervous systems, and the interaction 
between the nervous system and body tissues 
in the development and maintenance of pain, 
including low back pain (LBP). Further, the biology 
of many tissues changes when challenged by 
pain and injury, as reported in a growing body 
of literature on the biology of muscle, fat, and 

connective tissue. These advances in understand-
ing of the complexity of LBP have implications 
for our understanding of pain and its interaction 
with the motor system, and may change how we 
consider motor control in the rehabilitation of 
LBP. This commentary provides a state-of-the-art 
overview of plasticity of biology in LBP. The paper 
is divided into 4 parts that address (1) biology of 
pain mechanisms, (2) neuroimmune interaction 
in the central nervous system, (3) neuroimmune 
interaction in the periphery, and (4) brain and pe-
ripheral tissue interaction. Each section considers 
the implications for clinical management of LBP. 
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Diverse Role of Biological Plasticity  
in Low Back Pain and Its Impact on 
Sensorimotor Control of the Spine

plasticity to more broadly define the ca-
pacity of the array of biological processes 
to undergo change in the presence of pain 
and injury. These processes interact to 
shape the response of the individual, with 
potential for both negative and positive 

outcomes for the experience of pain, the 
health of tissues, and recovery.

This complexity has diverse implica-
tions for the presentation of sensorimotor 
changes, potential underlying mecha-
nisms, and their relevance for long-term 
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mechanisms, and then considers biologi-
cal processes that occur in the presence 
of pain and injury that impact the sen-
sorimotor system at the brain, muscle/
tissue, and in between.

Contemporary View of Biology of Pain
Pain is a unique, individual experience. 
Nevertheless, research has shed some 
light on its different underlying biologi-
cal mechanisms, which vary from pre-
dominantly nociceptive to neuropathic, 
central sensitization, and mixed types of 
pain, each with a different relevance or 
relationship to sensorimotor control of 
the spine. Nociceptive pain (or perhaps 
more accurately, “pain associated with 
ongoing nociceptive input”) is defined as 
pain that is experienced with actual or 
threatening damage to nonneural tissue 
and is driven primarily by activation of 
nociceptors.92 Although direct evaluation 
of the activation of nociceptors is possible 
using microneurography,136 it is generally 
not possible in clinical contexts, and the 
term nociceptive pain is often used when 
pain is considered to be proportional 
to expected nociceptive input127 and is 
present within an otherwise normally 
functioning somatosensory system.73,92 
Such input may involve peripheral sen-
sitization from the inflammatory system 
response, sometimes referred to as “in-
flammatory pain.”72 The term nociceptive 
pain directly contrasts with neuropathic 
pain,92 which is defined as pain associ-
ated with a lesion or disease of the so-
matosensory nervous system.92

In many patients with pain, particu-
larly those with more persistent symp-
toms, a clear origin for nociceptive input 
is lacking or is not severe enough to ex-
plain the pain experienced by the patient, 
and there is no evidence of damage or 
disease in the somatosensory system. In 
such patients, there is often clinical evi-
dence of central (nervous system) sensi-
tization,118 which is a general term that 
encompasses many different processes 
(eg, activation, modulation, and modifi-
cation of peripheral afferents or central 
neurons145) involving many different ele-

ments of the nervous system, from cells 
and synapses to whole networks. Al-
though there is variation in the nervous 
system processes involved in central 
sensitization, this broad category of pain 
is defined as “an amplification of neural 
signaling within the central nervous sys-
tem [CNS] that elicits pain hypersensi-
tivity”145 or “increased responsiveness of 
nociceptive neurons in the CNS to their 
normal or subthreshold afferent input.”92

This is becoming recognized as a ma-
jor mechanistic descriptor for chronic 
pain states.73 Some specific terms have 
been proposed (eg, nociplastic, algopath-
ic, and nocipathic).73 The term nociplas-
tic has been included in the taxonomy 
used by the International Association for 
the Study of Pain60 to describe “pain that 
arises from altered nociception despite 
no clear evidence of actual or threatened 
tissue damage causing the activation of 
peripheral nociceptors or evidence for 
disease or lesion of the somatosensory 
system causing the pain.” This term is not 
yet universally accepted and is argued by 
some to be too vague to be accepted as a 
replacement for other existing terms.21,44 
The term is used synonymously with the 
terms central pain,41 centralized pain,26 
or central sensitization pain103,126 (note 
that the term central sensitization re-
fers to the neurophysiological process of 
sensitization, which may or may not con-
tribute to this pain presentation, creating 
some confusion).

In the current clinical commentary, 
we use the term nociplastic/central to 
be inclusive of the related literature. In 
many patients, evidence of central sen-
sitization is demonstrated by altered 
sensory processing in the brain,130 with 
increased brain activity in areas known 
to be involved in acute pain sensations 
(insula, anterior cingulate cortex, and 
prefrontal cortex [PFC]), as well as re-
gions not found to be active in response 
to noxious stimuli (various brain stem 
nuclei, dorsolateral frontal cortex, and 
parietal association cortex),120 decreased 
activity in other regions, poor func-
tioning of descending antinociceptive 

mechanisms,147 and increased activity of 
brain-orchestrated nociceptive facilita-
tory pathways.130 Psychological features 
(eg, catastrophization, fear of pain) are 
common and can moderate and/or me-
diate sensitization.101 Many people with 
a clinical presentation of pain that is 
deemed “nociceptive” or “neuropathic” 
also often copresent with signs of central 
sensitization.128

A clinical approach, as outlined in 
the TABLE, has been proposed to classify 
people with pain into groups based on 
the clinical judgment of a predominant 
neuropathic, nociplastic/central, or noci-
ceptive pain mechanism. This approach 
is based on research, including a Delphi 
study,124 studies that compared clini-
cal indicators of the 3 major pain types 
against clinical diagnosis,125,126 and in-
ternational expert opinion.35,105 The test-
retest reliability, interobserver reliability, 
concurrent validity, content validity, and 
prognostic value of the classification of 
patients based on presumed pain mecha-
nism are unknown.

In addition to the 3 major mechanistic 
descriptors for chronic pain states, many 
patients also present with mixed types 
of pain, and there is some foundation 
to consider a group with predominant 
psychogenic pain.103 Patients with this 
latter presentation may not fit within 
the other categories, but rather present 
with dominant maladaptive psychologi-
cal features and illness behavior (eg, pain 
catastro phizing combined with pain hy-
pervigilance, poor acceptance, depressive 
thoughts, and maladaptive pain coping 
styles such as avoidance behavior).
Pain Biology and Sensorimotor Control 
of the Spine The presentation and rel-
evance of sensorimotor features of low 
back pain (LBP) may differ between the 
3 different mechanisms of pain (noci-
ceptive, neuropathic, and nociplastic/
central) and likely have different rel-
evance for management. For instance, 
motor control changes may be tightly 
related to nociceptive-type pain.71 In that 
case, features of movement/posture and 
muscle activation may be responsible for 
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the suboptimal loading that maintains 
nociceptor discharge and its persistence 
beyond an acute injury. In neuropathic 
pain, symptoms can include features of 
particular relevance to sensorimotor con-
trol, such as motor weakness and sensory 
loss (including proprioception) driven by 
impaired propagation of action poten-
tials along the nerve or ectopic poten-
tials generated at the site of the lesion, 
both of which would lead to inaccurate 
information from the periphery being 
transmitted to the CNS. Further, muscle 
activation may be modified to unload or 
protect sensitized neural tissue.9 In noci-
plastic/central pain, there can be diverse 
adaptations in sensorimotor function, 
which might be expressed as an exces-
sive protection strategy that has little 
actual role in protecting tissues at risk,57 
reduced physical activity related to avoid-
ance, or adaptation in the sensory repre-
sentation of the body.27,37 In each case, 
rehabilitation of sensorimotor control 
and exercise would have different targets.

A plausible hypothesis is that tai-
loring interventions to match patient 

presentations, including presumed un-
derlying pain mechanisms, would im-
prove outcomes, as has been described 
in detail elsewhere.53 For those with 
ongoing nociceptor activity from tissue 
loading (ie, nociceptive pain), tailored 
treatment may involve optimization of 
loading through rehabilitation of mo-
tor control. For those with nociplastic/
central pain, cognition-targeted exer-
cise therapy combined with pain neu-
roscience education85,104 to address pain 
cognitions and behaviors may be effec-
tive. This approach has been found to 
be superior to education on back and 
neck pain and general exercise in pa-
tients with chronic spinal pain.84 Fur-
ther, a recent randomized clinical trial 
showed that individuals with features 
of pain consistent with nociceptive pain 
(based on a questionnaire that identified 
patients with or without a relationship 
between pain and movement/postures) 
achieved greater clinical improvement 
with movement-based treatment (motor 
control training) than with behavioral 
therapy (graded activity).83

Neuroimmune Interactions 
in the Nervous System
Although neuronal mechanisms are 
likely to be fundamental for the genesis 
of chronic pain,145 in the last decade ani-
mal studies have suggested that glial cells 
in the CNS (mainly microglia and astro-
cytes, and more recently also oligoden-
drocytes47) may play an important role in 
the development and/or maintenance of 
persistent pain conditions. In the pres-
ence of a pain-initiating event (eg, an in-
jury), microglia and astrocytes transition 
to an “activated” state.66,67 Glial activation 
refers to a series of cellular and molecular 
responses that include proliferation, mor-
phological changes, increased or de novo 
expression of cell surface markers or re-
ceptors, and the production of cytokines 
and other inflammatory mediators.68,108,112 
In animal models of pain, activated glial 
cells upregulate the expression of recep-
tors such as the adenosine triphosphate 
receptor P2X4

138 and the chemokine 
receptor CX3CR1,142 and increase the 
release of enzymes such as nitric oxide 
synthase91 or inflammatory mediators 

 

TABLE
Clinical Approach to Classification of Individuals With Pain as Having  

Predominant Neuropathic, Nociplastic/Central, or Nociceptive Pain Mechanisms

Step Description

1. Screen for neuropathic 
pain using the available 
international guidelines35,137

Classification of neuropathic pain would be concluded if
1. There is a history of relevant neurological lesion or disease
2. Pain distribution is neuroanatomically plausible
3. Supporting evidence is obtained by a clinical examination (eg, presence of negative sensory signs concordant with the lesion or disease of the somato-

sensory nervous system)
4. Objective diagnostic testing confirms the lesion or disease of the somatosensory nervous system
• Neuropathic pain is defined as possible, probable, or definite based on satisfying criteria 1 to 2, 1 through 3, or 1 through 4, respectively
• If criteria for neuropathic pain are not met, then move to step 2

2. Screen for nociceptive and 
central sensitization pain

Classification of pain predominantly related to nociceptor stimulation would be concluded if
• Pain is localized to the areas of mechanical load, provoked by specific postures and movements, and has a predictable stimulus-response profile127

• Pain experience is reasonably proportionate to the nature and extent of injury or pathology.105 This might be gleaned from the extent of injury, pathol-
ogy, and objective dysfunctions capable of generating nociceptive input (including imaging techniques and clinical examination)

Classification of pain predominantly related to nociplastic/central sensitization mechanisms would be concluded if
• Pain is somewhat variable/diffuse and does not follow a neuroanatomically logical pain pattern, defined as pain distribution that is not neuroanatomi-

cally plausible for the presumed source(s) of nociception.105 Pain drawings can be used to standardize and optimize the assessment of the individual’s 
pain distribution in a reliable and valid way.86,87 Pain outside the area of presumed nociception is an established feature of central sensitization pain,45,80 
but is not diagnostic of nociplastic mechanisms (eg, pain outside neuroanatomical distribution can also present in neuropathic pain90)

• Allodynia and/or hyperalgesia is identified outside the segmental area of primary nociception
• Presence of unhealthy pain cognitions (eg, pain catastrophization) and behaviors (eg, activity avoidance), which mediate sensitization processes141

• Classification can also be supported by identification of hypersensitivity of senses unrelated to the musculoskeletal system,105 assessed using a tool 
such as the Central Sensitization Inventory.89 Several studies support the clinimetric properties of the Central Sensitization Inventory in different 
countries74,89,100
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such as the proinflammatory cytokines 
interleukin (IL)-1β, tumor necrosis fac-
tor (TNF), and IL-6,66,146 and chemokines 
such as chemokine ligand-2.24 These mol-
ecules sensitize neural pathways involved 
in pain93 in a “pain produces pain” loop of 
central sensitization.

In animals, pain-related neuroinflam-
mation is most commonly observed in the 
spinal cord66 and sensory ganglia,77 but 
more recently it was also discovered at the 
level of the brain, including in the rostral 
ventromedial medulla,116,144 the trigeminal 
nuclear complex,79,108 and the ventral pos-
terolateral nucleus of the thalamus.78,148 
In the acute or subacute phase, glial ac-
tivation can be considered as part of an 
adaptive response, as the development of 
temporary pain hypersensitivity can favor 
protection of the injured body part, limit-
ing further tissue damage and promoting 
recovery. However, when glial activation 
is excessive, and/or does not promptly 
recede after the resolution of the initial 
insult, it can have deleterious effects and 
become the primary pathogenic element111 
mediating central sensitization. Impor-
tantly, drugs that reduce glial activation 
(eg, propentofylline or minocycline94,131) 
or that inhibit the action of glial products 
(eg, IL-1 receptor antagonists143) attenu-
ate or inhibit protective responses to pain/
nociception. Together, these observations 
indicate that glial activation represents 
neither a passive response to the pain-
initiating event nor an epiphenomenon. 
Rather, neuroimmune activation has an 
active (and likely fundamental) role in the 
pathophysiology of persistent pain main-
tained by central sensitization.

Despite the rapidly growing animal 
literature supporting a role of glial cells 
in pain, the evidence of a role for glial ac-
tivation in humans has been limited to a 
few post mortem immunohistochemical 
studies in the spinal cord of a handful of 
patients with complex regional pain syn-
drome28 or human immunodeficiency vi-
rus–related neuropathic pain.123 Recent 
work has provided early in vivo indica-
tions that glial cells may have a role in hu-
man LBP. Loggia et al81 imaged the brains 

of individuals with chronic LBP, as well 
as those of pain-free healthy volunteers, 
using the recently developed positron 
emission tomography (PET) radioli-
gand 11C-PBR28.17,19 The radioligand 11C-
PBR28 binds to the translocator protein 
(TSPO), which, within the CNS, is upreg-
ulated in activated microglia and reactive 
astrocytes in animal models of pain,50,144 
and is a putative imaging biomarker of 
inflammation.22 Increased tracer bind-
ing in chronic LBP was observed most 
prominently in the thalamus, and with 
remarkable consistency across patients 
in the primary somatosensory and motor 
cortices (S1/M1) (FIGURE 1). Within the S1/

M1, the PET signal increase was observed 
in the putative sensorimotor representa-
tions of the lumbar spine (in the postcen-
tral gyrus14) and leg (in the paracentral 
lobule82). As almost all of these patients 
suffered from combined back and leg 
pain, the observed spatial pattern of PET 
signal increase suggests somatotopically 
organized glial activation in the S1/M1. 
This appears to mirror the body distribu-
tion of the patients’ own pain symptoms13 
and has potential as a new mechanism to 
explain adaptation in spine sensorimotor 
function (see Neuroimmune Interactions 
in the Nervous System and Sensorimotor 
Control of the Spine below).

A B
SUVR SUVR
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cLBP Controls
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FIGURE 1. Evidence of glial activation in patients with cLBP. (A) Whole-brain group comparison; (B) individual data 
showing higher thalamic positron emission tomography signal in patients compared to sex-, age-, and binding 
affinity–matched controls. Abbreviations: cLBP, chronic low back pain; SUVR, standardized uptake value ratio. 
Adapted with permission from Loggia et al.81
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More recently, using the same 11C-
PBR28 radioligand, Albrecht et al3 ob-
served increased TSPO signals in the 
spinal cord of humans with lumbar ra-
diculopathy (an example of neuropathic 
pain), suggesting that glial activation 
could be observed at multiple sites in the 
CNS, as predicted by the preclinical lit-
erature. In the same study,3 the authors 
also observed elevated TSPO signals at 
the level of the neuroforamina (contain-
ing the dorsal root ganglion and nerve 
roots) ipsilateral to the symptomatic leg. 
The amount of inflammation predicted 
the amount of perceived relief after epi-
dural steroid injection. In this case, TSPO 
elevations are likely reflective of activa-
tion of peripheral immune cells, such as 
macrophages, but future studies need to 
provide experimental corroboration of 
this interpretation. Although these ob-
servations await future replication, they 
implicate glia in human pain disorders, 
supporting the exploration of glial cells 
as therapeutic targets for chronic pain 
disorders, from the perspectives of both 
modified processing of pain (nociplastic/
central pain) and dysfunction related to 
sensorimotor control of the spine.

Of note, some clinical trials assessing 
therapeutic efficacy of pharmacological 
agents that modulate glial activity have 
reported negative results,75 thus raising 
questions about the translatability and 
clinical relevance of animal work to the 
role of neuroimmune responses in hu-
man pain. On the other hand, humans 
suffering from subacute lumbar radicu-
lopathy demonstrated a small but sta-
tistically significant improvement after 
a brief treatment with the tetracycline 
antibiotic minocycline,140 which in ani-
mal models is a microglial inhibitor. The 
possibility of visualizing pain-related glial 
activation in vivo may help to identify 
patients most likely to benefit from glial 
modulators, as well as the optimal treat-
ment duration or dosage. These studies 
may also allow us to evaluate whether gli-
al activation explains sexual dimorphism 
in pain disorders, whereby different im-
mune cells mediate pain hypersensitivity 

in different sexes, as recently suggested in 
animal studies.129

Neuroimmune Interactions in the Nervous 
System and Sensorimotor Control of the 
Spine In addition to the potential role of 
glial cells in the biology of pain, including 
several aspects of central sensitization,115 
these cells also influence function of re-
lated neurons. For instance, glial cells 
influence the availability of neurotrans-
mitters,34 remove unused synapses 
between neurons, are necessary for met-
abolic support of neurons,52 and release 
molecules that regulate neuron struc-
ture, function, and connectivity.43 Each 
of these mechanisms would influence the 
interaction between neurons and even 
the capacity to learn.33,34 Thus, a plau-
sible hypothesis is that the somatotopi-
cally localized change in glial activation 
(ie, affecting the specific motor regions of 
the brain that control the back muscles) 
might serve a role in modified motor and 
sensory function in persistent pain. Re-
cent animal work highlights the involve-
ment of glia in altered motor function in 
orofacial pain.59 Glial cells might mediate 
the adaptation in sensorimotor function 
of trunk muscles or prevent recovery of 
sensorimotor control if their function im-
pacts learning and adaptation. This is an 
exciting hypothesis, as it might provide a 
mechanism for sensorimotor changes in 
the CNS and offer new opportunities for 
therapy or treatments to combine with 
exercise. It is possible that glial activation 
might be more prevalent in the presence 
of neuropathic pain related to the back in 
humans, as has been reported for other 
body regions in animals,59 which fur-
ther highlights the need to consider pain 
mechanisms when planning treatment. 
For treatment, although anti-inflam-
matory pharmacological interventions 
could be predicted, an exciting possibil-
ity for future research is the possible role 
that exercise might have in moderation of 
glial activation, with the plausible poten-
tial to influence the regulation of neural 
processes underlying sensorimotor con-
trol of the spine. These proposals require 
direct investigation.

Neuroimmune Interaction 
in the Somatic Tissues
The purpose of immune responses in 
musculotendinous or other viscoelastic 
tissues is to phagocytose injured cells, 
such as cells with injured membranes and 
intracellular structures occurring as a con-
sequence of overload, overstretch, com-
pression, or anoxia. Injured cells release 
soluble factors, including potassium and 
hydrogen ions, adenosine triphosphate, 
and glutamate, that have been shown to 
reduce the intensity of stimulus needed 
for action-potential generation, leading 
to a state of relative nociceptor hypersen-
sitivity by activating adjacent primary af-
ferent terminals in animals,5,10,113 among 
other possible mechanisms. Nearby mast 
cells activate, degranulate, and release 
histamine, bradykinin, inflammatory cy-
tokines, and proteases. These substances 
further sensitize primary afferent termi-
nals as well as increase vascular perme-
ability (leading to infiltration of immune 
cells). Macrophages and cells that are in-
jured, irritated, or apoptotic also produce 
inflammatory cytokines, molecules that 
are chemotactic for additional immune 
cell infiltration. These responses are hall-
marks of acute inflammation, mediate pe-
ripheral sensitization, and are a typically 
short-lived and reversible event. However, 
if injury or initiating stimuli are repeti-
tive or chronic, involved tissues have little 
chance to complete their healing processes 
and may develop persistent inflamma-
tion.12 Chronic inflammation is character-
ized by the prolonged presence of large 
numbers of macrophages in and around 
tissues, which contribute to secondary tis-
sue damage via prolonged phagocytic ac-
tivity and release of cytotoxic free radicals. 
Inflammatory cytokines are also cytotoxic 
at high levels. Animal studies show that a 
vicious cycle of tissue injury and provoca-
tion of pain may occur.12

There are many consequences of in-
creased tissue cytokines in animals. Most 
work relates to body regions other than 
the spine, but when data are available for 
the spine, we indicate it below. Various 
inflammatory cytokines (eg, IL-1α, IL-1β, 
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and TNF) can (1) induce synovial cells, 
lymphocytes, endothelial cells, and mac-
rophages to produce more inflammatory 
cytokines and chemokines; (2) increase 
permeability of blood vessel walls and 
immune cell chemotaxis, as mentioned 
above; (3) promote fibrosis, as discussed 
further below; and (4) sensitize primary 
afferent terminals via their receptors, 
further enhancing pain10,16,36 (FIGURE 2). 
Tumor necrosis factor signaling, for ex-
ample, is important in the development 
of pain behaviors in animal models that 
can be prevented or reversed by early 
treatment with anti-inflammatory drugs 
in animals.119 Such behaviors include 
cold allodynia, forepaw mechanical allo-
dynia, muscle hyperalgesia, and declines 
in muscle strength.1,8,31,61,70 Moreover, 
inflammatory cytokines can “spill over” 
from local tissues into the blood stream, 
circulate and potentially stimulate sys-
temic inflammatory effects, and cause 
widespread secondary tissue damage and 
pain hypersensitivity.10 Alternatively, sys-
temic cytokines may be delivered to the 
local tissue.

Chronic overrelease of several cy-
tokines can cause excessive fibroblast 

proliferation, including IL-1β and TNF, 
which are both proinflammatory and 
profibrogenic.11 The M2-type macro-
phages are involved in wound repair and 
produce cytokines that aid tissue repair, 
including TGFβ1.11,76 Animal studies 
show that overproduction of fibrogenic 
cytokines can lead to excessive activation 
of fibroblasts and collagen matrix depo-
sition in a process called tissue fibrosis. 
Fibrosis in and around muscles, ten-
dons, and nerves may distort dynamic 
biomechanical properties and increase 
tissue strain due to adherence to adja-
cent structures and subsequent reduc-
tion in dynamic tissue function.30 For 
example, fibrosis in the connective tissue 
“container” surrounding nerves has been 
linked to chronic nerve compression,15,106 
known to increase pain behaviors in ani-
mals. Furthermore, collagen deposition 
can increase around individual myofibers 
or entire muscles and tendons, tethering 
structures to each other and to nerves 
within these structures—changes that 
can enhance pain behaviors15,36 in addi-
tion to their potential role in modifica-
tion of mechanics,110 which has major 
relevance for sensorimotor control of the 

spine in LBP; however, research is re-
quired to assess translation of these find-
ings to humans.

Substance P is an 11-amino acid neu-
ropeptide involved in nociception periph-
erally and centrally.49,65 Increased release 
of this neuropeptide peripherally plays 
a role in enhanced temperature hyper-
sensitivity, mechanical hyperalgesia, and 
painful peripheral neuropathy in ani-
mals.99,117,134,135,139 Interestingly, substance 
P is produced not only by neurons but 
also by peripheral immune cells (macro-
phages and mast cells), endothelial cells, 
fibroblasts, and tenocytes.6,7,32,69 Increased 
levels of substance P can be stimulated 
by IL-1β, an increase that stimulates fi-
broblast proliferation and collagen pro-
duction and remodeling.7,25,38,69 There is 
also evidence that substance P is released 
from the central terminals of sensory ax-
ons, contributing to the central sensiti-
zation responses discussed earlier.31,58,146 
Thus, substance P production peripher-
ally can be linked to peripheral immune 
responses, central sensitization, and en-
hanced pain behaviors in animals.

There is emerging evidence that chang-
es in muscle do not depend on primary 
injury to the muscle. Muscle fatty infil-
tration, fibrosis, and structural changes 
(muscle atrophy, muscle fiber–type chang-
es) are common in the back muscles, par-
ticularly the multifidus, in humans with 
LBP.2,51,55 Although early changes may be 
mediated by neural changes such as reflex 
inhibition,54 there is emerging evidence 
from animal studies to suggest that the 
later changes may be mediated by the in-
flammatory or peripheral substance P re-
sponses described above (FIGURE 3).39 This 
was first identified in animals from ribo-
nucleic acid analysis of muscle,56 and more 
recent work has localized this increased 
proportion of M1 (proinflammatory) mac-
rophages.64 As the muscle is not injured 
in these animal models of intervertebral 
disc (IVD) injury, an important question 
is why the muscle enters a proinflam-
matory state. One possibility is that this 
is secondary to changes in the metabolic 
profile of muscle with the transition to a 

Inflammation: capillaries 
release cell and fluid exudate

Injured cells release chemotactic
factors that attract macrophages

CD68+ macrophages in loose
areolar connective tissue

IL-1/CD68+ macrophages
in injured tendon

Neutrophils (6-24 h)

Macrophages (24-48 h, 
to years 
if chronic)

Edema

Mast cells

Short-lived vasodilation

Long-lived vasodilation

TNF-α
IL-1

Histamine
Bradykinin
Prostaglandin
Serotonin

TNF-α, IL-1

Injured cells
release chemotactic 
factors and cytokines

FIGURE 2. Sequence of events in acute inflammation in response to a mechanical injury stimulus. Mechanical 
injury can damage both vascular and musculoskeletal tissues and lead to the mobilization of neutrophils and 
macrophages by circulatory distribution and/or by chemotaxis induced by the presence of collagen fragments and 
chemokines at the injury site. Even when the vasculature is spared mechanical injury, the release of inflammatory 
mediators from tissue mast cells and injured cells causes vasodilation and leukocyte mobilization. Ideally, acute 
inflammation resolves and injured tissue heals, either completely or with the formation of a small fibrous scar. With 
a persistent injury stimulus, the inflammatory response itself may cause further injury and inflammation, thereby 
setting up a vicious cycle with subsequent incomplete healing and/or chronic inflammation. Abbreviations: IL, 
interleukin; TNF, tumor necrosis factor.
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greater proportion of fast (fatigable) mus-
cle fibers.64 Recent research in humans 
has identified similar processes in muscle 
in humans. Analysis of muscle samples 
harvested during surgery has identified a 
proinflammatory response similar to that 
observed in animals (James et al 2019, un-
published data).
Neuroimmune Interactions in Somatic 
Tissues and Sensorimotor Control of the 
Spine Peripheral immune system changes 
have potential relevance for sensorimotor 
control of the spine. First, sensitization 
of peripheral neurons will decrease the 
threshold for nociceptor discharge.16 This 
may require greater control of tissue load-
ing to prevent nociceptor discharge and 
may underlie increased muscle guarding. 
Second, the consequence of increased fi-
brosis and fatty changes has clear impli-
cations for tissue health in terms of the 
potential of muscle to control and move 
the spine as a result of muscle capacity 
(as the effector organ of the neural sys-
tem) and tissue tethering from fibrosis, 
which will limit/distort movement. It is 
also plausible that modified tissue health 
impacts the quality of sensory information 
arising from the tissues.

This immune-mediated adaptation 
in the tissues points to potential benefit 
from addressing the immune response. 
Although pharmacological interventions 
may be obvious, other interventions are 
possible. Exercise can influence immune 
system activity, including macrophage 
activity in animals42,63 and the associ-
ated accumulation of fibrosis.62 Exercise 
may target the immune response in the 
tissues more effectively. This might un-
derlie the efficacy of exercise for targeting 
sensorimotor control of the spine. There 
is preliminary evidence that muscle fatty 
replacement can be reversed with exer-
cise in humans,109 and tissue-level effects 
on fibrosis may require physical therapies 
(including manual therapy15) to address 
tissue mobility/health. Consideration of 
the time course of the condition and de-
tailed assessments of muscle properties 
(eg, assessment of structural change with 
imaging), and perhaps systemic expres-

sion of cytokines, could guide treatment 
targeting.

Brain and Peripheral Tissue Interaction
Many anatomical components of the 
spine are linked to LBP, including IVDs, 
facet joints, muscles, and ligaments. 
Abnormalities in IVDs are observed in 
about 40% of clinical cases and are more 
prevalent in people with LBP,18,107 impli-
cating IVDs as a potential source of no-
ciceptive input to maintain nociceptive 
pain in a subset of patients. However, 
there is a mismatch between IVD degen-
eration and LBP, and research has turned 
to a mouse model.

The secreted protein, acidic and rich 
in cysteine (SPARC)–null mouse model 
of progressive, age-dependent IVD de-
generation suggests that increased disc 
innervation, loss of disc height, muscle 
inflammation,63 sensory neuron plastic-

ity, and neuroinflammation in the spinal 
cord can contribute to chronic LBP.96-98 
In addition, axial LBP (with likely noci-
ceptive pain mechanisms) and nonaxial 
(ie, radicular, which is generally attrib-
uted to a neuropathic pain mechanism) 
LBP have different underlying mecha-
nisms,95 as outlined above, and respond 
differentially to both pharmacological 
and nonpharmacological treatments.133 
For example, axial discomfort is more 
sensitive to morphine than radicular 
pain in the same animals.133 Given the 
different underlying pain mechanisms 
driving divergent symptoms (see Con-
temporary View of Biology of Pain sec-
tion), using treatments that target the 
primary pathology or simultaneously 
targeting multiple pain mechanisms 
may improve patient outcomes. Inter-
estingly, providing animals with access 
to running wheels for several months 

SMAD2

SMAD3

TGFß1 TGFß2 NK1R

ERK

CCN2

TGFß1
CCN2

Fibroblast

Fibroblast
proliferation

SMAD4

Collagen
matrix production

Fibrosis if
excessive or
cumulative

FIGURE 3. Mechanisms by which TGFβ1 and SP induce tissue fibrosis. On ligand binding and activation of TGFβ1 
and TGFβ2 receptor complexes, SMAD2 and SMAD3 become phosphorylated (black circle). Phosphorylated 
SMAD2-phosphorylated SMAD3/SMAD4 complexes undergo nuclear translocation and then increased production 
of connective tissue growth factor (CCN2), a matricellular protein. The binding of TGFβ1 and the binding of SP to 
its main receptor, the NK1R, also leads to ERK phosphorylation (black circle), and then increased production and 
secretion of not only CCN2 but also additional TGFβ1. Both CCN2 and TGFβ1 stimulate fibroblast and tenocyte 
proliferation and collagen matrix production, the latter termed fibrosis if excessive or cumulative. Substance P is 
also a direct inducer of β1 production in primary cultured tenocytes.39 Abbreviations: ERK, extracellular signal-
regulated kinase; NK1R, neurokinin-1 receptor; SP, substance P; TGF, transforming growth factor.
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attenuated both behavioral indices of 
pain and histological and biochemical 
signs of disc pathology, providing evi-
dence for a relationship between pain 
and IVD degeneration (Millecamps 
et al, unpublished data). As outlined 
above (see Neuroimmune Interaction in 
the Somatic Tissues section), exercised 
animals also had reduced cytokine ex-
pression in muscle,63,64 not only linking 
muscle changes with IVD and pain, but 
also highlighting a role of exercise in 
moderating this association.

In addition to peripheral structures, 
chronic pain is associated with long-
term changes throughout the CNS that 
characterize central sensitization, as re-
viewed in detail in Brumagne et al20 and 
considered in the preceding section. If 
peripheral structures such as IVDs con-
tribute to chronic LBP and the brains of 
patients with chronic pain are different 
from those of pain-free controls, then a 
chicken-and-egg problem emerges: does 
living with chronic pain drive changes 
in the brain, or are individuals with less 
cortical gray matter, for example, predis-
posed to developing chronic pain? To ad-
dress this, Seminowicz et al121 performed 
a longitudinal study using a preclinical 
animal model of neuropathic pain fol-
lowing peripheral nerve injury. Adult 
rats underwent repeated anatomical 
brain magnetic resonance imaging prior 
to and over 20 weeks following induction 
of neuropathic pain. The frontal cortex of 
the neuropathic animals was smaller at 
the end of the study than in noninjured, 
sham-operated controls. Considering the 
observation that peripheral input can 
drive CNS pathology, it follows that the 
simultaneous targeting of peripheral fac-
tors would be important and may require 
concomitant consideration of CNS fac-
tors for pain management to be effective.

To investigate whether chronic pain-
related differences in the CNS are per-
manent, patients with chronic LBP who 
were diagnosed with spinal structure–re-
lated pain and were scheduled for spine 
surgery or facet injections were recruited. 
Participants underwent structural and 

functional magnetic resonance imag-
ing scans and completed questionnaires 
measuring pain and disability. Measures 
were repeated at 6 months. Findings 
were remarkable—both the LBP-as-
sociated reduction in the thickness of 
the PFC and altered functional activity 
returned toward control levels in indi-
viduals reporting improvements in pain 
or disability.23,122 These studies not only 
suggested that peripheral input is asso-
ciated with the initiation of supraspinal 
neuroplasticity, but also demonstrated 
that it might also maintain it. On the 
other hand, a recent trial showed that 
patients with chronic LBP responding 
well to conservative treatment did not 
change brain gray matter morphological 
features, even at 12-month follow-up.84 
Clinical improvements without detect-
able changes in brain gray matter mor-
phological features suggest that further 
work is needed to clarify their relevance.

The mechanism underlying the pain-
related changes in the PFC must be 
persistent, dynamically regulated, and 
reversible. Epigenetic regulation, a term 
used to describe reversible modifications 
to chromatin structure or genomic DNA 
that alter gene expression, is an ideal 
candidate to mediate between adverse 
exposure (eg, acute injury, progressive 
disc degeneration) and long-term neu-
roplastic changes that contribute to 
chronic pain. The importance of epigen-
etic modifications, such as DNA meth-
ylation, as a mechanism contributing to 
chronic pain is becoming increasingly 
clear.29,40,102 By regulating which genes 
are and are not expressed in an indi-
vidual cell, epigenetics allows the same 
genomic DNA to encode different types 
of cells and tissues in the same organ-
ism, such as brain cells and skin cells.114

That epigenetic mechanisms could 
mediate the long-term impact of injury 
and its potential reversibility through 
widespread reprogramming of gene ex-
pression in chronic pain, including in the 
PFC, is compelling. Preclinical data from 
studies of animal models of neuropathic 
pain (which is relevant for sciatic pain), 

but not yet back pain, provide support for 
this hypothesis, including the following: 
(1) chronic neuropathic pain is associated 
with altered global DNA methylation in 
the PFC,132 (2) changes in the differential 
methylation of thousands of individual 
genes have been reported,88 (3) dysregu-
lation of the ribonucleic acid expression 
of hundreds of individual transcripts in 
the rodent PFC has been reported,4 (4) 
changes in global DNA methylation in 
the PFC and pain sensitivity are both re-
versed by environmental enrichment,132 
(5) DNA methylation of individual func-
tionally important genes in the PFC (eg, 
N-methyl-D-aspartate [NMDA] and 
opioid receptors) correlates with pain 
severity,88 (6) treatment with an epigen-
etic drug attenuated behavioral signs of 
chronic pain,46 and (7) analysis of periph-
eral T cells from animals with chronic 
neuropathic pain identified distinct pat-
terns of differentially methylated genes.88 
Although the findings of these studies re-
quire validation in terms of their transla-
tion to humans, they provide the initial 
evidence for a plausible link between epi-
genetic programming and chronic neuro-
pathic pain.
Brain and Peripheral Tissue Interac-
tion and Sensorimotor Control of the 
Spine As highlighted in this section, 
debating whether chronic pain is a pe-
ripheral or a central phenomenon is 
no longer productive. In LBP, although 
degenerating IVDs have a role in some 
individuals and may contribute to input 
that maintains nociceptive pain, many 
other factors contribute. Peripheral no-
ciceptive input mediated by suboptimal 
sensorimotor control of the spine can ini-
tiate and maintain maladaptive changes 
in brain structure and function. At the 
molecular level, epigenetic mechanisms 
are likely to mediate widespread changes 
in gene expression that contribute to 
brain pathology underlying central sen-
sitization. Together, these observations 
provide a foundation for development of 
new treatments and treatment combina-
tions. Combinations of pharmacological 
and nonpharmacological interventions 
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(eg, physical activity, manual therapy, en-
vironmental enrichment) that target both 
peripheral input from the spine and path-
ological CNS plasticity should be consid-
ered in the treatment of chronic LBP. 
Rehabilitation of LBP is likely to require 
a multifaceted approach that includes 
consideration of multiple interacting 
“bottom-up” and “top-down” biological 
mechanisms that interact with the neural 
processing of nociception and pain and 
sensorimotor control of the spine.

CONCLUSION

T
his commentary highlights the 
impact of biological processes on 
both the pain experience and sen-

sorimotor control from the bottom up 
and top down. These processes not only 
impact the processing of nociception and 
pain, but also have a direct role in modi-
fication of neural processes associated 
with movement and sensation and the 
capacity of the muscles to control move-
ment. Although it is plausible that tar-
geted interventions will aid optimization 
of outcome, additional work is required 
to understand the underlying biological 
processes, the mutability of intervention, 
and the impact on the course of and re-
covery from LBP. U
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