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Abstract: Heightened anticipation and fear of movement-related pain has been linked to detrimen-
tal fear-avoidance behavior in chronic low back pain (cLBP). Spinal manipulative therapy (SMT) has
been proposed to work partly by exposing patients to nonharmful but forceful mobilization of the
painful joint, thereby disrupting the relationship among pain anticipation, fear, and movement.
Here, we investigated the brain processes underpinning pain anticipation and fear of movement in
cLBP, and their modulation by SMT, using functional magnetic resonance imaging. Fifteen cLBP
patients and 16 healthy control (HC) subjects were scanned while observing and rating video clips
depicting back-straining or neutral physical exercises, which they knew they would have to perform
at the end of the visit. This task was repeated after a single session of spinal manipulation (cLBP and
HC group) or mobilization (cLBP group only), in separate visits. Compared with HC subjects, cLBP
patients reported higher expected pain and fear of performing the observed exercises. These ratings,
along with clinical pain, were reduced by SMT. Moreover, cLBP, relative to HC subjects, demonstrated
higher blood oxygen level-dependent signal in brain circuitry that has previously been implicated in
salience, social cognition, and mentalizing, while observing back straining compared with neutral
exercises. The engagement of this circuitry was reduced after SMT, and especially the spinal manipu-
lation session, proportionally to the magnitude of SMT-induced reduction in anticipated pain and
fear. This study sheds light on the brain processing of anticipated pain and fear of back-straining
movement in cLBP, and suggests that SMT may reduce cognitive and affective-motivational aspects
of fear-avoidance behavior, along with corresponding brain processes.

Perspective: This study of cLBP patients investigated how SMT affects clinical pain, expected pain,
and fear of physical exercises. The results indicate that one of the mechanisms of SMT may be to
reduce pain expectancy, fear of movement, and associated brain responses.
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levated anticipation of motion-related pain is
E common in chronic low back pain (cLBP),® and is

associated with fear of movement and excessive
avoidance behavior, which can be detrimental to health
and quality of life, and prevent recovery.*® Higher fear-
avoidant behavior is associated with higher disabil-
ity, 1229686971 and reduction in fear/anxiety can predict
successful therapy.”® The fear-avoidance model of
chronic pain posits that chronification of pain is often
characterized by a vicious cycle whereby catastrophizing
about pain leads to fear of movement and hypervigi-
lance, which in turn can incite hypersensitization and
exacerbation of pain, leading to yet more avoidance.*
This cycle has been linked to Pavlovian and operant con-
ditioning,”"®” in which pain initially represents an
unconditioned response to a nociceptive unconditioned
stimulus, but may be elicited by a progressively wider
range of nonharmful movements (conditioned stimu-
lus).?”“ While a large literature implicates psychologi-
cal mechanisms of fear-avoidance behavior in pain, less
is known about the brain mechanisms involved in the
anticipation and fear of movement-evoked pain. Under-
standing these mechanisms is critically important, as
they influence behavioral decisions to approach or
avoid situations where a perceived harmful physical
movement may occur.

Initial neuroimaging studies of cLBP patients observing
back-straining maneuvers have found increased sympa-
thetic responses®® and altered brain processing in circuitry
consistent with social cognition, salience, and mentalizing,
such as the ventrolateral (vIPFC) and dorsomedial (dmPFC)
prefrontal cortex, mid-anterior insula (m/alNS), middle
temporal gyrus (MTG), superior temporal sulcus (STS), and
amygdala. Notably, in these studies, participants passively
viewed static pictures™>®" or videos**** depicting people
in back-straining positions, without any actual prospect of
executing physical activity by the participants themselves.
Thus, the behavioral relevance of the context—and in
turn fear—may have been limited.

Conditioned responses—such as fear of potentially
harmful maneuvers—can be “unlearned” when the con-
ditioned stimulus or conditioned response consistently
occurs without leading to unconditioned response (eg,
a perceived harmful motion is not followed by pain or
harm). There is evidence that exposing patients to
(feared) nonharmful physical activity, to extinguish fear
responses, can reduce avoidance behavior in chronic
musculoskeletal pain.?®®”’ Interestingly, one proposed
effect of spinal manipulative therapy (SMT), which
involves salient sensory and proprioceptive feedback
through passive mobilization of spine joints, is that it
might help disrupt the association between fear, back-
motion, and pain.?’4 However, it has not yet been inves-
tigated whether SMT affects motivational aspects rele-
vant to avoidance—such as anticipated pain and fear of
movement. Moreover, very little is known about how
SMT affects brain processing.?

Here, we investigated the brain-based underpin-
nings anticipated pain and fear of physical exercises,
and the effect of 2 SMT techniques (grade 3 mobili-
zation and grade 5 manipulation) on these outcomes.
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We hypothesized that, in cLBP, observation of back-
straining, relative to neutral, exercises would elicit
brain responses in circuitry involved in social cogni-
tion, fear, salience, and pain processing (eg, the
anterior cingulate cortex, insulae, and amygdalae), in
addition to visual and frontoparietal attention
regions. Further, we hypothesized that SMT would
reduce clinical pain, as well as fear, expected pain of
back-straining exercises, and corresponding brain
responses to observation of such exercises. Finally,
we hypothesized that these effects would be stron-
ger for SMT manipulation relative to mobilization,
reflecting a dose response.

Methods
Subjects

Fifteen patients with cLBP (8 women, mean age 37.7 +
9.7 years) and 16 individually age- and sex-matched
healthy control (HC) subjects (8 women, mean age 38.2
+ 10.4 years) were enrolled. One HC subject was
excluded from final paired analyses, as we were not
able to recruit an age- and sex-matched cLBP patient for
this individual. All subjects provided written informed
consent before participation. The study was approved
by the Human Research Committee of Massachusetts
General Hospital and was conducted in accordance with
the Declaration of Helsinki.

Inclusion criteria for cLBP patients included age >21
years and <65 years, nonspecific low back pain, diag-
nosed >6 months before enrollment, and ongoing pain
that averaged at least 4 on a 0 to 10 scale of pain during
the week before enrollment. Exclusion criteria included
radicular pain (ie, pain radiating down below the knee);
neural deficit in the lower extremity; positive dural ten-
sion signs; surgery within the past year related to back
pain; pain management procedures during the study
period; contraindications to functional MRI (fMRI); cur-
rent or past history of major medical, neurological, or
psychiatric illness other than chronic pain; peripheral
nerve injury; diabetes; pregnancy; breast feeding; <6
months postpartum; history of head trauma; high blood
pressure; use of opioid medications; use of recreational
drugs; history of substance abuse; and back pain due to
cancer, fracture, or infection. Exclusion criteria for HC
subjects were, in addition to those for cLBP, chronic or
acute low back pain.

Experimental Protocol

The study involved 3 study visits for cLBP patients—
an initial behavioral visit, an MRI visit with SMT
mobilization (ie, grade Ill of the Maitland Joint Mobi-
lization Grading Scale),”® and an MRI visit with SMT
manipulation (ie, grade V of the Maitland Joint
Mobilization Grading Scale). The order of the MRI
visits was counterbalanced across subjects (mean
interval between MRI visits was 24.7 + 22.9 days).
The HC group completed 2 study visits—an initial
behavioral visit and an MRI visit with grade V SMT.
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As we did not anticipate SMT-induced changes in
clinical outcomes for HC subjects, we did not include
an SMT mobilization visit for this group, as the com-
parison between SMT manipulation and SMT mobili-
zation was aimed at investigating differences in
clinical outcomes and associated brain responses.
Therefore, our study had a mixed design, with both
a within-subject (grade Il vs grade V in cLBP patients)
as well as a between-subject (Grade V in cLBP vs
healthy participants) component. All visits took place
at the MRI facilities at Martinos Center for Biomedi-
cal Imaging, Massachusetts General Hospital,
between September 2014 and November 2016.

Behavioral Visit

Following informed consent, a licensed chiropractor
performed a clinical evaluation (including history and
physical examination) to further characterize the nature
of the pain symptoms (or, in the case of healthy volun-
teers, to exclude the presence of back pain) and to deter-
mine the suitability and safety of manual therapy. All
participants were also asked to perform a series of back-
straining (eg, sit-ups, thrusts, leg lifts, pelvic tilts) and
non—back-straining (eg, arm lifts, flexion-extension of
the arms) physical exercises repeated 3 times each, rating
the intensity (0 = no pain, 100 = the most intense pain tol-
erable) and unpleasantness (0 =neutral, 100 =extremely
unpleasant) of their back pain after each repetition. The
patients’ responses to these exercises were used to guide
the selection of subject-specific videos that most reliably
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exacerbated the patients’ pain for use in the subsequent
MRI visits.

MRI Visits

Participants were placed in a supine position in a 3T
Siemens Skyra whole-body MRI scanner (Siemens Medical
Systems, Erlangen, Germany). In each of 4 separate fMRI
runs (~4.5 minutes each, 2 before and 2 after SMT), par-
ticipants were shown 4 videos (20 seconds each)—2
depicting high back-straining exercises (BSE) and 2
depicting low back-straining exercises (Neutral)—in a
pseudorandomized order (Fig 1, for illustrations of all
the video material, see Supplemental Digital Content 1).
For each cLBP patient, as well as his/her age- and sex-
matched control subject, the BSE videos depicted an
actor (sex-matched to the participant) performing the 2
back-straining exercises that most reliably elicited pain in
the cLBP patient during the behavioral visit; in the con-
trol videos, the same actor performed non—back-strain-
ing exercises (identical in all participants). We decided to
use videos rather than still images, as they are able to
show the full dynamic of physical exercises, which likely
increases their salience. To maximize the emotional
impact of observing back-straining exercises, at the
beginning of the imaging visit the participants were
informed that at the end of the imaging visit they would
be asked to perform the exercises they observed in the
videos. Eight seconds after each video, the subjects were
prompted to rate how much pain they expected from
performing the exercise they saw on the previous video

Video exercise

] Rating 1 .
| Rating 2
How fearful are you of
performing this exercise? How painful do you
think it will be?
0 ——F—— 100 x4
0 —F——100
20s
8s
12s
12s >
Clinical Clinical
pain rating SMT pain rating

Video run 1+2
(preSMT)

(mobilization / manipulation,
counterbalanced order)

Video run 3+4

(postSMT) Exercises

Figure 1. Experimental design. Participants viewed 20-second videos showing back-straining or neutral (non—back-straining) exer-
cises in a pseudorandomized order. After each video, they rated fearfulness and expected pain from performing the exercise on
visual analog scales. There were 8 videos (spread over 2 scan runs) before, and 8 videos after spinal manipulative therapy. At the
end of each scan session, the participants were asked to perform the observed back-straining exercises, which had been established
to be painful at the initial training visit for all chronic low back pain patients.
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clip and how fearful they were of performing that exer-
cise. After the first 2 fMRI runs, participants rated their
clinical pain and were temporarily removed from the
MRI bore, received SMT (either manipulation or mobiliza-
tion) while on the scanner bed, rated their clinical pain
again, and then were placed back into the MRI bore and
completed the 2 final fMRI runs. At the end of the first
visit, participants performed 5 repetitions of each of the
back-straining and neutral exercises corresponding to
the videos they had seen, in keeping with the instruc-
tions. The main purpose of this procedure was to ensure
that the experimental induction of anticipation of clinical
pain exacerbation would be still credible during the sub-
sequent visit.

Psychophysical Measures

During the scanning procedures subjects used a button
box for ratings, using scales displayed with E-Prime soft-
ware version 1.1 (Psychology Software Tools, Sharpsburg,
PA). Numerical rating scales (0—100) were used for low
back pain (0 =no pain, 100 = the most intense pain tolera-
ble) before and after the pre-SMT fMRI and the post-SMT
fMRI runs. The same button box was used for ratings of
expected pain from exercise (How painful do you think it
will be?; 0=no pain, 100 =the most intense pain tolera-
ble) and fearfulness (How fearful are you of performing
this exercise?; 0=not at all fearful, 100=extremely
fearful).

At the training visit, participants filled out the follow-
ing validated questionnaires for facilitating clinical char-
acterization of the sample groups: Tampa Scale of
Kinesiophobia (TSK),** Pain Catastrophizing Scale
(PCS),>° Beck Depression Inventory (BDI),® Brief Pain
Inventory (BPI),*° and a 5-point Likert-type treatment
credibility scale modified from Sherman et al®’ (1 = defi-
nitely, 5 = definitely not). Additionally, they rated both-
ersomeness of low back pain on a visual analog scale
(VAS) (0=not at all bothersome, 100 = extremely both-
ersome), expected relief from SMT on a VAS (0=does
not work at all, 10=complete relief), and desire for
relief (0 = no desire for pain relief, 10 =the most intense
desire for relief imaginable).

Psychophysics Data Analysis

To compare cLBP and HC groups on basic demo-
graphic, trait, and clinical characteristics, we performed
paired t tests of age, TSK, PCS, BDI, and BPI scores; credi-
bility of SMT; clinical pain at baseline; anxiety at base-
line; low back bothersomeness; expected relief from
SMT; and desire for relief.

To confirm that cLBP expected more pain from,
and were more fearful of, performing back-strain-
ing relative to neutral exercises, we performed a
mixed-design analysis of variance (ANOVA) with
the factors group (cLBP, HC) and video exercise
(BSE, Neutral), using baseline (pre-SMT) ratings
from the first visit.

To investigate whether SMT affected cLBP patients’
clinical pain, we performed an ANOVA with the factors
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SMT technique (manipulation, mobilization), and time
(pre-SMT, post-SMT). Scan order (manipulation first,
mobilization first) was included as a categorical covari-
ate of no interest.

To investigate whether SMT affected cLBP patients’
expected pain and fear of performing exercises, we
used 2 separate repeated measures ANOVAs using
each patient’s mean expected pain and fearfulness
(averaged across BSE and Neutral videos, separately),
with the factors SMT technique (manipulation, mobi-
lization), video exercise (BSE, Neutral), and time (pre-
SMT, post-SMT). Scan order (manipulation first, mobi-
lization first) was included as a categorical covariate
of no interest.

We calculated Pearson correlation coefficients to
investigate the relationship between SMT-induced
change in clinical pain (post-SMT — pre-SMT) versus
change in expected pain and change in fearfulness.
To investigate the impact of positive expectation,
we calculated Pearson correlation coefficients
between expected relief from SMT versus SMT-
induced changes in clinical pain, expected pain, and
fearfulness. Behavioral data were analyzed using
JASP (version 0.8.1.5 JASP Team, Amsterdam, Neth-
erlands).

MRI Data Acquisition and Preprocessing

Blood oxygen level-dependent (BOLD) fMRI data
were collected using a whole brain, simultaneous multi-
slice, T2*-weighted gradient echo BOLD echo-planar
imaging pulse sequence (repetition time = 1,250 ms,
echo time = 33 ms, flip angle =65°, voxel size =2 mm iso-
tropic, number of slices=75, Simultaneous Multi-Slice
(SMS) factor=5). A high-resolution structural volume
(multiecho MPRAGE) was collected for the purposes of
anatomical localization and spatial normalization (repeti-
tion time = 2,530 ms, echo time = 1.69 ms, flip angle=7°,
voxel size = 1 mm isotropic).

fMRI data processing and analysis was carried out using
FEAT (FMRI Expert Analysis Tool) Version 6.0, part of FSL
(FMRIB’s Software Library; www.fmrib.ox.ac.uk/fsl). The
following preprocessing was applied: slice-timing correc-
tion, motion correction using MCFLIRT,?” field map—based
echo-planar imaging unwarping using PRELUDE and
FUGUE,*°3" nonbrain removal using BET,® spatial smooth-
ing (full width at half maximum = 4mm), temporal high-
pass filter (.011 Hz as computed by FSL's cutoffcalc), and
grand-mean intensity normalization by a single multiplica-
tive factor. All 4 runs were realigned (6 degrees of free-
dom) to a common space (the seventh volume of the first
fMRI run) before first-level general linear model (GLM)
analyses. The transformation matrix for the registration
from functional to the high-resolution anatomical image
was computed using Boundary Based Registration (Free-
Surfer’s bbregister tool).?® For structural-to-standard space
registration, we used the FSL's Linear registration tool
(FLIRT, 12 degrees of freedom)>*>2 followed by FSL’s non-
linear registration tool (FNIRT)." All single-subject analyses
were performed in functional space, and registration to
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Table 1. Subject Characteristics
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GRroOUP 95% CONFIDENCE INTERVAL
cLBP HC T DF P COHEN'S D Lower UPPER

Age 37.7+£9.7 38.5+10.1 .580 14 571 .150 —1.258 2.191
Tampa Scale of Kinesiophobia 33.3+57 33.1+75 .854 14 407 221 —2.569 5.969
Pain Catastrophizing Scale 13.6+10.2 6.2+6.8 2.492 14 .026 .644 972 12.962
Beck Depression Inventory 1.9+£2.7 41+42 1.427 13 177 .382 —1.082 5.296
Perceived credibility of SMT 1.8+ .6 21+.8 —-.942 13 363 —.252 —.753 295
Clinical pain (baseline, 0—100) 44.2 +18.6 3+1.2 8.484 13 <.001 2.268 32.889 55.361
Anxiety (baseline, 0—100) 12.24+12.3 8+14 3.606 13 .003 964 4.896 19.532
Brief Pain Inventory (severity, 0—10) 45+14 3+ .4 1.768 14  <.001 2.780 3.358 5.029
Brief Pain Inventory (interference, 0—10) 32+2.1 A+£2 5.757 14 <.001 1.486 1.948 4.261
Low back bothersomeness (0—10) 50+1.7 5+13 9.049 14 <001 2.336 3.403 5.517
Expected relief (0—10) 53428 3.6+33 1.363 14 194 .352 —.962 4.315
Desire for relief (0—10) 9.0+1.0 1.8+34 7.150 14 <.001 1.846 5.101 9.472

Abbreviations: cLBP = chronic low back pain; HC = healthy control; SMT = spinal manipulative therapy.

NOTE. Values are mean + SD unless otherwise indicated.

standard space (Montreal Neurological Institute 152) was
applied before group analyses.

fMRI Data Analysis

Single-subject GLM analyses were carried out using
FILM with local autocorrelation correction. For each run
(2 pre-SMT and 2 post-SMT), we modeled the epochs
corresponding to the video presentation (BSE, Neutral)
as regressors in a GLM. In the same design matrix we
also modeled rating periods, the first temporal deriva-
tive of each time course, and the 6 motion parameters
as regressors of no interest. From this first-level analyses
we computed a total of 6 contrasts: BSE—rest, Neutral—
rest, BSE—Neutral, and their opposites. In a second-level
fixed-effect analysis, we averaged the contrast maps
across both pre-SMT runs and across both post-SMT runs
separately, resulting in 2 sets of contrasts of parameter
estimates for each contrast (pre-SMT and post-SMT).

To investigate brain responses to observing back-
straining and neutral exercises, we carried out whole-
brain voxelwise group GLMs separately for cLBP and HC
subjects from the baseline (pre-SMT) scans at the first
visit, for each of the 6 contrasts. Because the patient
and control groups were recruited in a matching-pairs
design (with each patient matched for age and sex to a
control subject), the group contrasts were evaluated
using paired t tests comparing age- and sex-matched
cLBP and HC groups. Group inference was performed
using FLAME (FMRIB’s Local Analysis of Mixed Effects)
1+ 2, and the resulting statistical maps were cluster cor-
rected for multiple comparisons using a cluster-forming
voxelwise threshold of Z > 2.3, and a (corrected) cluster
significance threshold of P < .05.

We then conducted whole-brain voxelwise GLMs to
investigate SMT-induced change in BOLD responses
(pOSt'SMTBSE—NeutraI - pre'SMTBSE—Neutral) in CI-BPmanip rel-
ative to cLBPmopii, and cLBPyanip relative to HC subjects.

To investigate whether SMT-induced changes in
expected pain and fear of movement were associated
with changes in brain responses to these videos, we

carried out whole-brain voxelwise regression analyses
(post-SMTgse-neutral pre-SMTgse neutral)  With  SMT-
induced changes in expected pain and fearfulness rat-
ings (pOSt'SMTBSE—NeutraI - pre'SMTBSE—NeutraI) as regres-
sors of interest. These regression analyses were
performed separately for SMTmanip @and SMTqpi, and
for cLBP participants only since the HC group, as antici-
pated, did not show enough dynamic range in ratings
of expected pain (12 of 15 rated expected pain as 0 both
before and after SMT).

Visualization of brain imaging data was produced
using FSL's FSLView for data displayed on volumes
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FsIView), FreeSurfer's
Freeview for brain surfaces (https:/surfer.nmr.mgh.har
vard.edu), and Caret for cerebellar surfaces (http://www.
nitrc.org/projects/caret/).'>-®>

Results

Demographic, Trait, and Clinical
Characteristics

CLBP and HC groups did not significantly differ in age,
TSK or BDI scores, perceived credibility of SMT, and
expected relief from SMT (Table 1). We found significantly
higher PCS scores, clinical pain (baseline VAS, BPI, and low
back bothersomeness), baseline anxiety, and desire for
relief for cLBP compared with HC subjects. For 1 cLBP
patient, we did not obtain BDI, credibility, clinical pain,
and anxiety. However, all participants were retained for
data collection of all other data for both imaging visits.

cLBP Patients, Relative to HC Subjects,
Expected More Pain From, and Were
More Fearful of, Performing Back-
Straining Exercises

A mixed-design ANOVA confirmed that cLBP patients,
relative to HC subjects, anticipated the exercises
depicted in the videos, when performed in first-person
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Figure 2. Ratings of videos showing back-straining and neutral exercises. Patients with chronic low back pain (cLBP) (A) expected
back straining exercises to be more painful than neutral exercises, and (B) were more fearful of performing these exercises. There
was a significant interaction, confirming that the difference in ratings between videos of back-straining and neutral exercises was
significantly larger for cLBP compared with healthy control (HC) subjects. **P < .01; ***P < .005.

at the end of the visit, to be more painful (main effect of
group: Fq13=31.54, P < .001, n2p= .71). Furthermore, a
main effect of video exercise confirmed higher expected
pain from BSE relative to Neutral (F; ;3=35.87, P < .001,
n2p= .73). Most importantly, there was a group x video
exercise interaction (Fy43=32.38, P < .001, n2p= TN A
paired t test between cLBP patients and HC subjects
revealed that the difference in expected pain between
BSE and Neutral conditions was significantly greater
(t14=5.82, P < .001, d =1.50) for cLBP patients (23.84 +
15.32) compared with HC subjects (1.25 + 2.60). The
mean and SD data of the video ratings are presented in
Figure 2.

A repeated-measures ANOVA confirmed higher fear of
performing the exercises depicted in the videos for cLBP
patients relative to HC subjects (main effect of group:
F1,13=6.88, P=.021, nzp =.35). A main effect of video exer-
cise confirmed higher fearfulness of BSE relative to Neutral
exercises (F113=2.79, P < .001, n%,=.62). Importantly,
there was a group xvideo exercise interaction
(F1,13=12.35, P=.004, nzp =.49). This difference was signifi-
cantly greater (t14=3.77, P=.002, d =.97) for cLBP patients
(6.75 £ 6.01) compared with HC subjects (.25 + 1.36).

Brain Responses to the Observation of
Back Straining Relative to Neutral
Physical Exercises

Baseline group brain responses to BSE and Neutral
videos, compared with rest, are shown in Supplemen-
tary Figure 1. When observing BSE, compared with Neu-
tral exercises, cLBP patients showed higher BOLD signal
in multiple regions including visual areas (V) 1, 4, and 5;
supramarginal gyrus; angular gyrus; temporoparietal
junction (TPJ); a cluster in the superior parietal sulcus
(STS)/middle temporal gyrus (MTG) compatible with the

extrastriate body area; anterior insula (alNS); posterior
cingulate cortex; anterior mid-cingulate cortex (aMCC);
ventrolateral (vIPFC), dorsomedial (dmPFC), and dorso-
lateral (dIPFC) prefrontal cortices; thalamus; caudate;
putamen; and cerebellum (Fig 3A).

The HC group also demonstrated higher BOLD signal
during BSE relative to Neutral videos, but in a smaller
number of regions (V5, supramarginal gyrus, TPJ, lateral
PFC, aMCC, thalamus, putamen, and caudate) (Fig 3B).

A direct group comparison (cLBP vs HC) of the
BSE—Neutral contrast revealed statistically significant
clusters in bilateral dIPFC, left vIPFC/aINS, left STS/
MTG, left TPJ, and dmPFC (Fig 3C, top). As illustrated
by extracted mean Z scores in these regions (Fig 3C,
bottom), cLBP patients demonstrated significant acti-
vations during observation of back-straining exer-
cises, compared with no activation (or, in some cases,
deactivation) when observing the neutral exercises.
The HC subjects, on the other hand, showed no sig-
nificant activation in response to either of the videos,
and little or no difference across video type. A binar-
ized mask created from regions significant in the
CLBPgse-neutrai-HCBsE-Neutral CONtrast was used for the
subsequent region of interest (ROI)—based investiga-
tion of the effects of SMT on the brain responses to
observing exercises.

SMT Reduced Clinical Pain, Expected Pain,
and Fear of Performing Physical Exercises

Clinical Pain

Assignificant ANOVA main effect of time (F; 13 =13.34,
P=.003, 772p= .51) indicated that clinical pain was
reduced after SMT (31.12 + 16.83) relative to the pre-
SMT baseline (41.69 + 18.11). There was no main effect
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Figure 3. Blood oxygen level-dependent (BOLD) responses to observing back-straining exercises (BSE) relative to neutral exercises
(Neutral). (A) Activation maps show cluster-corrected BOLD responses (voxel-based Z scores, before spinal manipulative therapy) to
viewing BSE relative to Neutral videos in chronic low back pain (cLBP) patients, and (B) age- and sex-matched healthy control (HC)
subjects, and (C) in cLBP patients relative to HC subjects. There were no significant voxels in the opposite contrast (HC subjects —
cLBP patients). Bar plots show mean Z scores within regions of Interest (ROIs) drawn from the [cLBPgse.neutral — HCase-neutrall CONtrast,
indicating the interaction was driven by increased BOLD responses to BSE videos for cLBP patients. Error bars represent SEM. Abbre-
viations: dIPFC = dorsolateral prefrontal cortex; alNS = anterior insula; mPFC = medial prefrontal cortex; STS = superior temporal sul-
cus; MTG = middle temporal gyrus; TPJ = temporoparietal junction; PFC = prefrontal cortex.

of SMT technique (F13=.25, P=.63, n°,=.02) and no
time x SMT technique interaction (Fy3=.22, P=.65,
nzp =.02). Thus, the data did not support the hypothesis
that the effect of SMT on clinical pain is different
between manipulation and mobilization (Fig 4A).

Expected Pain

A significant ANOVA main effect of time (F 43=38.99,
P=.01, 772p= .41) indicated that expected pain from the
exercises was reduced after SMT (20.94 + 16.97) relative
to before (24.87 + 19.08). As hypothesized, there was a
signiﬁcant main effect of video exercise (F; 13=29.85, P
<.001, 7, =.70), with BSE (34.95 + 13.86) rated higher
than Neutral (10.86 + 13.15). There was a significant
time x video exercise interaction (F;13=6.28, P=.026,
1% =.33). In line with our hypothesis, a direct t test indi-
cated that the SMT-induced reduction was stronger for
BSE (A[post-SMT — pre-SMT]: —5.66 + 7.6) than for Neu-
tral (A[post-SMT — pre-SMT]: —2.21 + 2.27) videos
(t14=1.99, P=.034) (Fig 4B). There was a significant SMT
technique x scan order interaction (Fy,13=4.92, P=.045,
nzp =.27). There were no significant interactions
between time x SMT technique (Fi13=.25, P=.62,
an =.02) and time x video exercise x SMT technique
(F1,13=1.35, P=.27, 1°,=.09). Thus, the data did not
suggest that that the effect of SMT on expected pain
was different depending on the SMT technique used.

Fear of Movement

A significant main effect of time (Fq3=4.89,
P =.046, n2p=.27) indicated fearfulness was reduced
after SMT (7.13 &+ 10.47) relative to before (7.91 &
11.35) (Fig 4C). As expected, there was also a main
effect of video exercise (F;:3=25.37, P > .001,
1%, =.66), showing higher fearfulness ratings of BSE
(11.80 £ 11.13) relative to Neutral videos (3.24 +
8.82). There were no other significant main effects or
interactions (all Ps > .06). Thus, the data did not sug-
gest that an SMT-induced reduction in fearfulness
was different across different video types or SMT
techniques.

Relationship Between Clinical Pain Versus Expected
Pain and Fearfulness cLBP patients’ change in clinical
pain (post-SMT — pre-SMT) correlated significantly with
change in expected pain (post-SMTgse.neutral — Pre-
SMTgse_neutral) (r=.58, P=.02), indicating that patients
with the greatest reduction in clinical pain following
SMT also had the greatest reduction in expected pain
from performing the observed back-straining exercises
(Fig 4D). We did not find a statistically significant corre-
lation between change in fearfulness and change in
clinical pain (r=.17, P=.55).

Relationship Between Expected Relief of SMT Versus
SMT Outcomes cLBP patients’ expected relief of SMT
correlated significantly with change in clinical pain
(r=.67, P=.006) and expected pain from performing
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Figure 4. Spinal manipulative therapy (SMT)—induced change in clinical pain and expected pain from, and fear of, performing

physical exercises. (A) SMT significantly reduced clinical pain (P=

.003), but this pain change did not differ between SMTnyanip and

SMTmobil (P=.65). (B) SMT reduced expected pain from performing exercises in chronic low back pain (cLBP) patients (P=.01). This
reduction was significantly stronger for back-straining exercises relative to neutral exercises (P=.03). (C) SMT reduced overall fear of
performing exercises in cLBP patients (P=.046). (D) SMT-induced change in clinical pain (post-SMT — pre-SMT) correlated with SMT-
induced change in expected pain, such that those with the strongest pain reduction also had the strongest reduction in expected
pain of performing back-stressing exercises. (E) In cLBP patients, expected pain relief of SMT correlated significantly with SMT-
induced change in expected pain from performing exercise (back-straining — neutral). *P < .05. Abbreviation: HC = healthy control.

exercise  (post-SMTgse.neutral pre-SMTgse neutral)
(r=—.64, P=.01). There was no significant correlation
between expected relief from SMT and change in fear-
fulness (r=—.22, P=.44).

SMT Reduced Brain Responses in Circuitry
Involved in Processing Observed Back-
Straining Exercises

A whole-brain voxelwise within-group interaction in
the cLBP group (cLBPpaniplpost-SMT gse-neutral — Pre-

SIVITBSE»NeutraI] - CI-BPmobiI [pOSt'SMTBSE—NeutraI — pre-
SMTgseneutral]) Showed a  statistically significant

difference in the effect of technique (manipulation vs
mobilization) in left STS, right aINS, right S1, right supe-
rior temporal gyrus (STG), bilateral dIPFC, vIPFC, vmPFC,
posterior insula, paracingulate, medial occipital cortex,
and cerebellum (Fig 5A). Furthermore, a between-group
interaction (cLBPmanip[post-SMTgse-neutral — Pre-SMTgse.
Neutral] — HC [pOSt'SMTBSE—NeutraI - pre'SMTBSE—NeutraI])
indicated the presence of a statistically significant dif-
ference in the effect of manipulation across groups
(cLBP vs HC) (Fig 5A) in left TPJ and bilateral alINS, vIPFC,
dIPFC, STS/MTG, medial occipital cortex, and right cere-
bellum (Fig 5B). The examination of Z-stat values from
these regions suggested that the interaction was driven
by a BOLD contrast reduction following SMTmanip, When
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Figure 5. Manual therapy reduced blood oxygen level-dependent (BOLD) responses to videos showing back-straining exercises
relative to neutral exercises in chronic low back pain (cLBP) patients. To investigate spinal manipulative therapy (SMT) effects on
BOLD responses to observing back straining exercises (BSE), we compared whole-brain contrast parameters (post-SMTgse_neutral —
pre-SMTgse-neutral) TOr chronic low back pain (cLBP) patients receiving grade 5 manipulation (cLBPmanip) relative to those receiving
grade 3 mobilization (cLBPyobi1) and healthy control (HC) subjects. cLBPyanip showed a widespread reduction of BOLD contrast rela-
tive to (A) cLBPopii and (B) HC. (C) To illustrate directionality, mean Z values were extracted from regions of interest (ROls) where
the cLBP patient/HC subject contrast overlapped with voxels that showed a stronger BOLD signal in response to BSE for cLBP patients
relative to HC subjects at baseline (the [cLBPgse-neutral — HCase-Neutral]l CONtrast= (see Figure 3C). Error bars represent SEM. Abbrevia-
tions: dIPFC = dorsolateral prefrontal cortex; TPJ =temporoparietal junction; vIPFC = ventrolateral prefrontal cortex; alNS = anterior
insula; mPFC = medial prefrontal cortex; STS = superior temporal sulcus; MTG = middle temporal gyrus.

observing back-straining exercises (BSE-Neutral) for cLBP
patients, compared with an increase for HC subjects
(Fig 5C). Exploratory contrasts showing the contrast
(post-SMTgse-neutral — Pre-SMTgse.neutral) Separately for
CLBPmanip and cLBPmqpii are shown in Supplementary
Figure 2.

SMT-Induced Change in Expected Pain
Correlated With SMT-Induced Change in
Brain Responses to Observation of Back-
Straining Exercises

A whole-brain voxelwise regression analysis indi-
cated that, for cLBPmanip, those patients with the
largest SMT-induced reduction in expected pain
from performing back-straining exercises also had
the largest SMT-induced reduction in BOLD fMRI
responses to videos in right TPJ, left STS/STG, left
m/alNS, aMCC, and SMA (Fig 6A, left). To illustrate
this relationship, we extracted mean Z scores from
2 ROIs (aINS and STS) identified by the intersection
of the correlation map and with the activation map
from the baseline (cLBP gse-neutral -HCase-neutral)
contrast (Fig 3C), and plotted these values against
SMT-induced Aexpected pain (BSE-Neutral) (Fig 6A,
right). There was no significant correlation
between SMT-induced change in expected pain and
BOLD responses to videos for cLBP,opii. FOor cLBP 5.
nipr there was a significant correlation between
SMT-induced change in fear of movement and
BOLD responses to videos (BSE-Neutral) in right
MTG, right lateral occipital cortex, medial

thalamus, and the periaqueductal gray matter
(Fig 6B). For cLBPyopii, there was a significant cor-
relation between SMT-induced change in fear of
movement and BOLD responses to videos (BSE-Neu-
tral) in left STS/MTG, left mid-posterior insula, pos-
terior cingulate cortex, precuneus, medial occipital
cortex, and cerebellum (Fig 6C).

Conclusions

We used fMRI to investigate brain processes support-
ing fear of movement and anticipated pain of back-
straining exercises in cLBP patients, and modulation of
this brain circuitry by SMT. cLBP, relative to age- and
sex-matched HC subjects, reported higher fear, and
anticipated pain, of performing back-straining exercises
depicted by observed videos, which was accompanied
by increased BOLD fMRI responses in brain circuitry
involved in social processing, emotion regulation, and
salience. SMT reduced clinical pain, fear of movement,
and expected pain from back-straining exercises. Fur-
thermore, reductions in fear and expected pain corre-
lated with reductions in BOLD responses to observing
back-straining exercises. Although there were no differ-
ences between SMT techniques on self-report assess-
ment, SMTmanip Was associated with stronger reduction
in BOLD responses, relative to SMT o and HC subjects.
These results shed light on 1) the brain processing
underpinning aversive anticipation of back-straining
movements in cLBP and 2) how SMT might affect these
motivational processes.

We found that cLBP patients, relative to HC sub-
jects, showed greater BOLD responses in the vIPFC,
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alNS, dmPFC, dIPFC, TPJ, and STS/MTG when observ-
ing videos of individuals performing back-straining
relative to neutral exercises. Several of these regions
(dmPFC, aINS, and dIPFC) are known nodes of the
salience network,” and have been implicated in pain
anticipation.?>?® These regions have also been impli-
cated in goal formation, prediction error processing,
and top-down modulation of pain.?”*’~>>72 Further-
more, VIPFC, TPJ, and STS have been consistently
implicated in mentalizing, theory of mind, and social
cognition more generally.'®°>°6% Finally, the STS/
MTG cluster is consistent with the extrastriate body
area, which is implicated in processing observed bod-
ies and body parts.'*3¢

Previous studies investigating fear of movement in
cLBP have produced mixed results. Consistent with our
findings, 1 recent study found that cLBP relative to HC
showed increased activation of vIPFC, aINS, STG/STS,
and dmPFC/ACC in response to observing images of
back-straining relative to neutral activities.®’ Another
study also found increased vIPFC and amygdala activa-
tion for videos showing back-straining versus back-neu-
tral activities, albeit no BOLD contrast difference
between cLBP and HC.** Another study found increased
hippocampal activation for high-fear cLBP patients com-
pared with HC subjects,® while an earlier study found no
patient versus HC subject contrast in fMRI response to
still images of back-straining maneuvers.” These
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discrepancies may be due to protocol differences. Our
study differs from earlier reports in 2 important ways.
First, while most previous studies (except °') used a pre-
selected pool of aversive stimuli, we used individually
tailored back-straining videos for each patient based on
which exercises were most painful, maximizing the con-
trast between back-straining and neutral stimuli. Sec-
ond, our stimuli were likely more behaviorally relevant
than in previous studies, as the participants knew they
would be asked to perform the same exercises depicted
in the videos. This may have improved our sensitivity in
recording relevant brain processes.

We did not find increased BOLD responses in circuitry
typically associated with fear, such as the amygdala,
aMCC, and subgenual ACC. One reason may be that,
despite significantly higher cLBP fear ratings for back-
straining compared with neutral videos, and compared
with HC subjects, the task did not appear to induce
intense kinesiophobia, with relatively small magnitude
of fear overall, and with several patients reporting no
fear at all. Thus, it is still possible that amygdala/subge-
nual ACC play important roles for chronic pain-related
kinesiophobia in real-life situations involving stronger
fear.>® Moreover, previous studies have also reported
limited fear and perceived aversiveness of specifically
designed “fear-evoking” visual stimuli,*>** some of
which nevertheless reported increased BOLD responses
in the amygdala.**** Future studies may use brainstem-
optimized acquisition to investigate the involvement of
other key structures important for fear conditioning,
such as the posterior and medial hypothalamic
nuclei,'® 95473 dorsal periaqueductal gray matter,5%%*
and the superior colliculus.*'

Notably, we observed higher ratings of expected pain
compared with fear, suggesting patients still found the
observed exercises aversive, but perhaps on a more cog-
nitive level, with limited affect. Expectations play a cru-
cial role in pain. Expectations about whether pain will
improve or worsen following an intervention can lead to
hypo- or hyperalgesia, respectively.>'”**>" Importantly,
expectations and beliefs about the outcome of certain
actions guide behavioral decisions on whether to
approach or avoid.”? Interestingly, we found that initial
expectations of treatment relief correlated with reduc-
tion in expected pain from back-straining exercises
(Fig 3E). Fear responses likely play a crucial role in the
acquisition of avoidance behavior, and are elicited in sit-
uations where such feared movements are likely to occur.
Nevertheless, explicit fear may potentially be limited dur-
ing abstract cognitive evaluation of the outcomes of
movement—such as in the context of our study—during
which avoidance decisions are often made.*”

We found that SMT reduced not only patients’ clinical
back pain, but also the aversiveness of the observed back-
straining exercises (ie, both fear and expected pain). More-
over, this correlated with SMT-induced reduction in BOLD
responses. Specifically, patients with stronger reduction in
expected pain also had stronger reduction in BOLD
responses in alNS, STS/STG, aMCC, and Secondary Somato-
sensory Area Il (SIl) (SMTmanip) and for reduction in fear
and BOLD responses in STS/MTG, posterior insula,

Brain Mechanisms of Anticipated Painful Movements

posterior cingulate cortex, and cerebellum (SMTopil)-
One possibility is that SMT may disrupt the association
between low back movement, fear, and pain.”’# Within
the fear-avoidance framework, SMT elicits salient sensory
and proprioceptive input from the painful region (low
back), presumably followed by not only an absence of a
unconditioned stimulus/unconditioned response (nocicep-
tion/pain), but also a reduction of pain. This might help
disrupt the association between low back sensations and
fear responses—somewhat reminiscent of exposure ther-
apy—which may in turn reduce the aversiveness of back-
straining exercises.®” Alternatively, the reduction in fear
and expected pain could be a direct consequence of
reduced clinical pain, as people are more aversive to
movements when in more pain.">® If so, we would expect
a similar reduction regardless of the location or mode of
analgesia.”® Future studies should systematically compare
these motivational aspects during pain relief from treat-
ments involving exteroceptive/proprioceptive stimuli of
the painful limb (eg, SMT for cLBP) versus treatment that
does not (eg, pharmacotherapy). According to the fear-
avoidance model, fear learning is a key component of
chronification of pain (and emerging avoidance behav-
ior), and unlearning (eg, through exposure to motion) is
suggested as a key mechanism to reduce avoidance behav-
ior and disability.”>®” Pharmacological treatment alone
has limited prolonged efficacy for chronic pain,® poten-
tially due to an inability to target the deeply engrained
association between pain anticipation, fear, physical
maneuvers, and pain.”"?* SMT, either as monotherapy or
potentially in combination with psychological therapy
such as cognitive behavioral therapy, may have the advan-
tage of targeting this learning aspect of chronic pain,
along with other putative mechanisms such as counterirri-
tation and improved local circulation due to reduced mus-
cle tension.®3®

We did not find evidence that different techniques of
SMT had a differential effect on clinical pain, fear of move-
ment, or expected pain. Previous studies have similarly not
found notable differences in efficacy between techni-
ques.'1?2394953 However, we did find differences between
techniques in brain responses to the observations of back-
straining exercises. cLBP patients relative to HC subjects
showed widespread reductions in BOLD responses to back-
straining videos after SMTanip, Notably in circuitry identi-
fied in the baseline contrast, such as the dIPFC, aINS, vIPFC,
TPJ, and STS/MTG. Direct comparison indicated that, for
CLBP, SMTmanip induced stronger BOLD contrast reductions
in the dIPFC, vIPFC, aINS, posterior STS/STG, and dmPFC, rela-
tive to SMT0bii- Taken together, these results suggest that
in cLBP patients, SMTanip induced stronger reduction of
BOLD responses in circuitry involved in processing observed
back-straining relative to neutral exercises, compared with
SMTmobil- This is in line with our hypothesis that SMTmanip,
which involves greater amplitude of manipulation directed
to the spine joints, would elicit stronger effects on clinical
outcomes. However, the lack of a difference in subjective
reports warrants a more cautious interpretation.

There are several limitations in our study. First, we
assessed outcomes from only a single session of SMTmanip
and SMTopii- Longitudinal studies involving multiple
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sessions may better parse SMT-induced changes in brain
responses with clinically relevant outcomes. Second, we
did not observe group differences (cLBP/HC) in trait kine-
siophobia.*> Importantly however, cLBP showed signifi-
cantly higher fear and expected pain from observed
back-straining exercises compared with neutral, which is
more central for testing our hypotheses. Furthermore,
we observed similar trait kinesiophobia scores as previous
studies.*>*>%* Notably, previous studies have also shown
no differences in trait kinesiophobia between chronic
pain samples and HC subjects,** highlighting the possibil-
ity that generalized trait kinesiophobia might not be as
relevant for chronic pain as situational kinesiophobia
that is being acquired through individualized history of
movement, fear, and pain. Another limitation is that the
sample size, while similar to those of many other fMRI
studies, was relatively limited and may be susceptible to
type Il errors. As such, this study should be followed up
by replication in larger samples. This would also allow
more advanced (eg, mediation and moderation) analyses
aimed at more directly evaluating the possible causal
relationship between brain and behavioral changes
induced by SMT.

In conclusion, we found that observation of back-strain-
ing exercises was associated with increased fear and
expected pain of performance in cLBP patients compared
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